/* Lossless_UDP.c * * An implementation of the Lossless_UDP protocol as seen in docs/Lossless_UDP.txt * */ #include "Lossless_UDP.h" //maximum data packets in sent and recieve queues. #define MAX_QUEUE_NUM 32 //maximum length of the data in the data packets #define PDATA_SIZE 1024 //maximum number of data packets that can be sent/recieved at the same time #define MAX_PACKET_NUM (MAX_QUEUE_NUM/4) //Lossless UDP connection timeout. #define CONNEXION_TIMEOUT 10 typedef struct { char data[PDATA_SIZE]; uint16_t size; }Data; typedef struct { IP_Port ip_port; char status;//0 if connection is dead, 1 if attempting handshake, //2 if handshake is done (we start sending SYNC packets) //3 if we are sending SYNC packets and can send data char inbound; //1 or 2 if connection was initiated by someone else, 0 if not. //2 if incoming_connection() has not returned it yet, 1 if it has. uint16_t SYNC_rate;//current SYNC packet send rate packets per second. uint16_t data_rate;//current data packet send rate packets per second. uint64_t last_SYNC; //time at which our last SYNC packet was sent. uint64_t last_recv; //time at which we last recieved something from the other uint16_t SYNC_packetsize; char SYNC_packet[(MAX_PACKET_NUM*4 + 4 + 4 + 3)]; //the SYNC packet itself Data sendbuffer[MAX_PACKET_NUM];//packet send buffer. Data recvbuffer[MAX_PACKET_NUM];//packet recieve buffer. uint32_t recv_packetnum; //number of data packets recieved (also used as handshake_id1) uint32_t sent_packetnum; //number of data packets sent uint32_t successful_sent;//we know all packets before that number were successfully sent uint32_t successful_read;//packet number of last packet read with the read_packet function uint32_t req_packets[MAX_PACKET_NUM]; //list of currently requested packet numbers. uint16_t num_req_paquets; //total number of currently requested packets uint8_t counter; }Connection; #define MAX_CONNECTIONS 256 Connection connections[MAX_CONNECTIONS]; //Functions //initialize a new connection to ip_port //returns an integer corresponding to the connection id. //return -1 if it could not initialize the connection. int new_connection(IP_Port ip_port) { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 0) { connections[i].status = 1; connections[i].inbound = 0; connections[i].recv_packetnum = random_int(); //handshake_id1 return i; } } return -1; } //returns an integer corresponding to the next connection in our incoming connection list //return -1 if there are no new incoming connections in the list. int incoming_connection() { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].inbound == 2) { connections[i].inbound = 1; return i; } } return -1; } //return -1 if it could not kill the connection. //return 0 if killed successfully int kill_connection(int connection_id) { if(connections[connection_id].status > 0) { connections[connection_id].status = 0; return 0; } return -1; } //return 0 if there is no received data in the buffer. //return length of received packet if successful int read_packet(int connection_id, char * data) { //NOTE: like this to handle overflow if(connections[connection_id].recv_packetnum - connections[connection_id].successful_read < MAX_QUEUE_NUM && connections[connection_id].recv_packetnum - connections[connection_id].successful_read != 0) { uint16_t index = (connections[connection_id].successful_read % MAX_QUEUE_NUM); memcpy(data, connections[connection_id].sendbuffer[index].data, connections[connection_id].sendbuffer[index].size); connections[connection_id].successful_read++; return connections[connection_id].sendbuffer[index].size; } return 0; } //return 0 if data could not be put in packet queue //return 1 if data was put into the queue int write_packet(int connection_id, char * data, uint32_t length) { //NOTE: like this to handle overflow if(connections[connection_id].sent_packetnum - connections[connection_id].successful_sent < MAX_QUEUE_NUM) { uint16_t index = (connections[connection_id].successful_sent % MAX_QUEUE_NUM); memcpy(connections[connection_id].sendbuffer[index].data, data, length); connections[connection_id].sendbuffer[index].size = length; return 1; } return 0; } //returns the number of packets in the queue waiting to be successfully sent. int sendqueue(int connection_id) { return connections[connection_id].sent_packetnum - connections[connection_id].successful_sent; } //returns the number of packets in the queue waiting to be successfully read with read_packet(...) int recvqueue(int connection_id) { return connections[connection_id].recv_packetnum - connections[connection_id].successful_read; } //check if connection is connected //return 0 no. //return 1 if attempting handshake //return 2 if handshake is done //return 3 if fully connected int is_connected(int connection_id) { return connections[connection_id].status; } //add a packet number to the list of packet numbers we are requesting //return 0 if added successfully //return 1 if it did not because the list was full (should never ever happen) int request_packet(int connection_id, uint32_t number) { if(connections[connection_id].num_req_paquets >= MAX_PACKET_NUM) { connections[connection_id].req_packets[connections[connection_id].num_req_paquets] = number; connections[connection_id].num_req_paquets++; return 0; } return 1; } //remove a packet number from the list of packet numbers we are requesting //return 0 if removed successfully //return 1 if it did not because it was not in the list. int unrequest_packet(int connection_id, uint32_t number) { uint32_t i; for(i = 0; i < connections[connection_id].num_req_paquets; i++) { if(connections[connection_id].req_packets[i] == number) { connections[connection_id].num_req_paquets--; connections[connection_id].req_packets[i] = connections[connection_id].req_packets[connections[connection_id].num_req_paquets]; return 0; } } return 1; } //Packet sending functions //One per packet type. //see docs/Lossless_UDP.txt for more information. int send_handshake(IP_Port ip_port, uint32_t handshake_id1, uint32_t handshake_id2) { char packet[1 + 4 + 4]; packet[0] = 16; memcpy(packet + 1, &handshake_id1, 4); memcpy(packet + 5, &handshake_id2, 4); return sendpacket(ip_port, packet, sizeof(packet)); } int send_SYNC(IP_Port ip_port, char type, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum, uint32_t * requested, uint32_t number) { if(number > MAX_PACKET_NUM) { return -1; } char packet[(MAX_PACKET_NUM*4 + 4 + 4 + 3)]; uint16_t index = 0; packet[0] = 17; packet[1] = type; index += 2; memcpy(packet + index, &counter, 1); index += 1; memcpy(packet + index, &recv_packetnum, 4); index += 4; memcpy(packet + index, &sent_packetnum, 4); index += 4; memcpy(packet + index, requested, 4 * number); return sendpacket(ip_port, packet, (number*4 + 4 + 4 + 3)); } int send_data(IP_Port ip_port, uint32_t packet_num, char * data, uint32_t length) { if(length > PDATA_SIZE) { return -1; } char packet[1 + 4 + PDATA_SIZE]; packet[0] = 18; memcpy(packet + 1, &packet_num, 4); memcpy(packet + 5, data, length); return sendpacket(ip_port, packet, 1 + 4 + length); } //END of packet sending functions //get connection id from IP_Port //return -1 if there are no connections like we are looking for //return id int getconnection_id(IP_Port ip_port) { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++ ) { if(connections[i].ip_port.ip.i == ip_port.ip.i && connections[i].ip_port.port == ip_port.port && connections[i].status > 0) { return i; } } return -1; } //table of random numbers used below. uint32_t randtable[6][256]; //generate a handshake_id which depends on the ip_port. //this function will always give one unique handshake_id per ip_port. //TODO: make this better uint32_t handshake_id(IP_Port source) { uint32_t id = 0, i; for(i = 0; i < 6; i++) { if(randtable[i][((uint8_t *)&source)[i]] == 0) { randtable[i][((uint8_t *)&source)[i]] = random_int(); } id ^= randtable[i][((uint8_t *)&source)[i]]; } if(id == 0)//id can't be zero { id = 1; } return id; } //Packet handling functions //One to handle each type of packets we recieve //return 0 if handled correctly, 1 if packet is bad. int handle_handshake(char * packet, uint32_t length, IP_Port source) { if(length != (1 + 4 + 4)) { return 1; } uint32_t handshake_id1, handshake_id2; memcpy(&handshake_id1, packet + 1, length); memcpy(&handshake_id2, packet + 5, length); if(handshake_id2 == 0) { send_handshake(source, handshake_id1, handshake_id(source)); return 0; } int connection = getconnection_id(source); if(connection != 1) { return 0; } if(handshake_id1 == connections[connection].recv_packetnum)//if handshake_id1 is what we sent previously. { connections[connection].status = 2; } return 0; } handle_SYNC(char * packet, uint32_t length, IP_Port source) { if(length < 4 + 4 + 3) { return 1; } if(length > (MAX_PACKET_NUM*4 + 4 + 4 + 3) || ((length - 4 - 4 - 3) % 4) != 0) { return 1; } uint32_t reqpackets[MAX_PACKET_NUM]; int connection = getconnection_id(source); char type; uint8_t counter; uint32_t recv_packetnum, sent_packetnum; uint32_t requested[MAX_PACKET_NUM]; int16_t index = 2; memcpy(&counter, packet + index, 1); index += 1; memcpy(&recv_packetnum, packet + index, 4); index += 4; memcpy(&sent_packetnum,packet + index, 4); index += 4; //memcpy(requested, packet + index, 4 * number); if(connection == -1) //we are not connected to the person who sent us that packet { if(handshake_id(source) == recv_packetnum) { //TODO: handle new inbound connection } else { return 1; } } if(connections[connection].status == 2) //we have just recieved our first SYNC packet from the other. { if(connections[connection].recv_packetnum == recv_packetnum && connections[connection].sent_packetnum == sent_packetnum) { connections[connection].status = 3; connections[connection].counter = counter + 1; connections[connection].last_recv = current_time(); } } if(connections[connection].status == 3) //we are connected and the other person just sent us a SYNC packet { //TODO: finish this function. } } handle_data(char * packet, uint32_t length, IP_Port source) { } //END of packet handling functions //if we receive a Lossless_UDP packet we call this function so it can be handled. //Return 0 if packet is handled correctly. //return 1 if it didn't handle the packet or if the packet was shit. int LosslessUDP_handlepacket(char * packet, uint32_t length, IP_Port source) { switch (packet[0]) { case 16: return handle_handshake(packet, length, source); case 17: return handle_SYNC(packet, length, source); case 18: return handle_data(packet, length, source); default: return 1; } return 0; } //Call this function a couple times per second //It's the main loop. void doLossless_UDP() { }