/* Lossless_UDP.c * * An implementation of the Lossless_UDP protocol as seen in docs/Lossless_UDP.txt * */ #include "Lossless_UDP.h" //maximum data packets in sent and recieve queues. #define MAX_QUEUE_NUM 32 //maximum length of the data in the data packets #define PDATA_SIZE 1024 //maximum number of data packets that can be sent/recieved at the same time #define MAX_PACKET_NUM (MAX_QUEUE_NUM/4) //Lossless UDP connection timeout. #define CONNEXION_TIMEOUT 10 //initial amount of sync/hanshake packets to send per second. #define SYNC_RATE 5 //send rate of sync packets when data is being sent/recieved. #define DATA_SYNC_RATE 20 typedef struct { char data[PDATA_SIZE]; uint16_t size; }Data; typedef struct { IP_Port ip_port; char status;//0 if connection is dead, 1 if attempting handshake, //2 if handshake is done (we start sending SYNC packets) //3 if we are sending SYNC packets and can send data char inbound; //1 or 2 if connection was initiated by someone else, 0 if not. //2 if incoming_connection() has not returned it yet, 1 if it has. uint16_t SYNC_rate;//current SYNC packet send rate packets per second. uint16_t data_rate;//current data packet send rate packets per second. uint64_t last_SYNC; //time at which our last SYNC packet was sent. uint64_t last_sent; //time at which our last data or handshake packet was sent. uint64_t last_recv; //time at which we last recieved something from the other Data sendbuffer[MAX_QUEUE_NUM];//packet send buffer. Data recvbuffer[MAX_QUEUE_NUM];//packet recieve buffer. uint32_t handshake_id1; uint32_t handshake_id2; uint32_t recv_packetnum; //number of data packets recieved (also used as handshake_id1) uint32_t orecv_packetnum; //number of packets recieved by the other peer uint32_t sent_packetnum; //number of data packets sent uint32_t osent_packetnum; //number of packets sent by the other peer. uint32_t sendbuff_packetnum; //number of latest packet written onto the sendbuffer uint32_t successful_sent;//we know all packets before that number were successfully sent uint32_t successful_read;//packet number of last packet read with the read_packet function uint32_t req_packets[MAX_PACKET_NUM]; //list of currently requested packet numbers(by the other person) uint16_t num_req_paquets; //total number of currently requested packets(by the other person) uint8_t recv_counter; uint8_t send_counter; }Connection; #define MAX_CONNECTIONS 256 Connection connections[MAX_CONNECTIONS]; //Functions //initialize a new connection to ip_port //returns an integer corresponding to the connection id. //return -1 if it could not initialize the connection. int new_connection(IP_Port ip_port) { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 0) { connections[i].ip_port = ip_port; connections[i].status = 1; connections[i].inbound = 0; connections[i].handshake_id1 = random_int(); connections[i].SYNC_rate = SYNC_RATE; connections[i].data_rate = DATA_SYNC_RATE; connections[i].last_recv = current_time(); connections[i].send_counter = 0; return i; } } return -1; } //initialize a new inbound connection from ip_port //returns an integer corresponding to the connection id. //return -1 if it could not initialize the connection. int new_inconnection(IP_Port ip_port) { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 0) { connections[i].ip_port = ip_port; connections[i].status = 2; connections[i].inbound = 2; connections[i].SYNC_rate = SYNC_RATE; connections[i].data_rate = DATA_SYNC_RATE; connections[i].last_recv = current_time(); connections[i].send_counter = 127; return i; } } return -1; } //returns an integer corresponding to the next connection in our incoming connection list //return -1 if there are no new incoming connections in the list. int incoming_connection() { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].inbound == 2) { connections[i].inbound = 1; return i; } } return -1; } //return -1 if it could not kill the connection. //return 0 if killed successfully int kill_connection(int connection_id) { if(connections[connection_id].status > 0) { connections[connection_id].status = 0; return 0; } return -1; } //return 0 if there is no received data in the buffer. //return length of received packet if successful int read_packet(int connection_id, char * data) { return 0; } //return 0 if data could not be put in packet queue //return 1 if data was put into the queue int write_packet(int connection_id, char * data, uint32_t length) { return 0; } //returns the number of packets in the queue waiting to be successfully sent. int sendqueue(int connection_id) { return connections[connection_id].sendbuff_packetnum - connections[connection_id].successful_sent; } //returns the number of packets in the queue waiting to be successfully read with read_packet(...) int recvqueue(int connection_id) { return connections[connection_id].recv_packetnum - connections[connection_id].successful_read; } //check if connection is connected //return 0 no. //return 1 if attempting handshake //return 2 if handshake is done //return 3 if fully connected int is_connected(int connection_id) { return connections[connection_id].status; } //put the packet numbers the we are missing in requested and return the number uint32_t missing_packets(int connection_id, uint32_t * requested) { uint32_t number = 0; uint32_t i; for(i = connections[connection_id].recv_packetnum; i != connections[connection_id].osent_packetnum; i++ ) { if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size == 0) { memcpy(requested, &i, number); number++; } } return number; } //Packet sending functions //One per packet type. //see docs/Lossless_UDP.txt for more information. int send_handshake(IP_Port ip_port, uint32_t handshake_id1, uint32_t handshake_id2) { char packet[1 + 4 + 4]; packet[0] = 16; memcpy(packet + 1, &handshake_id1, 4); memcpy(packet + 5, &handshake_id2, 4); return sendpacket(ip_port, packet, sizeof(packet)); } int send_SYNC(uint32_t connection_id) { char packet[(MAX_PACKET_NUM*4 + 4 + 4 + 2)]; uint16_t index = 0; IP_Port ip_port = connections[connection_id].ip_port; uint8_t counter = connections[connection_id].send_counter; uint32_t recv_packetnum = connections[connection_id].recv_packetnum; uint32_t sent_packetnum = connections[connection_id].sent_packetnum; uint32_t requested[MAX_PACKET_NUM]; uint32_t number = missing_packets(connection_id, requested); packet[0] = 17; index += 1; memcpy(packet + index, &counter, 1); index += 1; memcpy(packet + index, &recv_packetnum, 4); index += 4; memcpy(packet + index, &sent_packetnum, 4); index += 4; memcpy(packet + index, requested, 4 * number); return sendpacket(ip_port, packet, (number*4 + 4 + 4 + 2)); } int send_data(IP_Port ip_port, uint32_t packet_num, char * data, uint32_t length) { if(length > PDATA_SIZE) { return -1; } char packet[1 + 4 + PDATA_SIZE]; packet[0] = 18; memcpy(packet + 1, &packet_num, 4); memcpy(packet + 5, data, length); return sendpacket(ip_port, packet, 1 + 4 + length); } //END of packet sending functions //get connection id from IP_Port //return -1 if there are no connections like we are looking for //return id if it found it int getconnection_id(IP_Port ip_port) { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++ ) { if(connections[i].ip_port.ip.i == ip_port.ip.i && connections[i].ip_port.port == ip_port.port && connections[i].status > 0) { return i; } } return -1; } //table of random numbers used below. uint32_t randtable[6][256]; //generate a handshake_id which depends on the ip_port. //this function will always give one unique handshake_id per ip_port. //TODO: make this better uint32_t handshake_id(IP_Port source) { uint32_t id = 0, i; for(i = 0; i < 6; i++) { if(randtable[i][((uint8_t *)&source)[i]] == 0) { randtable[i][((uint8_t *)&source)[i]] = random_int(); } id ^= randtable[i][((uint8_t *)&source)[i]]; } if(id == 0)//id can't be zero { id = 1; } return id; } //Packet handling functions //One to handle each type of packets we recieve //return 0 if handled correctly, 1 if packet is bad. int handle_handshake(char * packet, uint32_t length, IP_Port source) { if(length != (1 + 4 + 4)) { return 1; } uint32_t handshake_id1, handshake_id2; memcpy(&handshake_id1, packet + 1, 4); memcpy(&handshake_id2, packet + 5, 4); if(handshake_id2 == 0) { send_handshake(source, handshake_id1, handshake_id(source)); return 0; } int connection = getconnection_id(source); if(is_connected(connection) != 1) { return 1; } if(handshake_id1 == connections[connection].handshake_id1)//if handshake_id1 is what we sent previously. { connections[connection].status = 2; //NOTE:is this necessary? //connections[connection].handshake_id2 = handshake_id2; connections[connection].orecv_packetnum = handshake_id1; connections[connection].sent_packetnum = handshake_id1; connections[connection].osent_packetnum = handshake_id2; connections[connection].recv_packetnum = handshake_id2; } return 0; } //returns 1 if sync packet is valid //0 if not. int SYNC_valid(uint32_t length) { if(length < 4 + 4 + 2) { return 0; } if(length > (MAX_PACKET_NUM*4 + 4 + 4 + 2) || ((length - 4 - 4 - 2) % 4) != 0) { return 0; } return 1; } //case 1: int handle_SYNC1(IP_Port source, uint32_t recv_packetnum, uint32_t sent_packetnum) { if(handshake_id(source) == recv_packetnum) { int x = new_inconnection(source); if(x != -1) { connections[x].orecv_packetnum = recv_packetnum; connections[x].sent_packetnum = recv_packetnum; connections[x].osent_packetnum = sent_packetnum; connections[x].recv_packetnum = sent_packetnum; return x; } } return -1; } //case 2: int handle_SYNC2(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum) { if(recv_packetnum == connections[connection_id].orecv_packetnum && sent_packetnum == connections[connection_id].osent_packetnum) { connections[connection_id].status = 3; connections[connection_id].recv_counter = counter; connections[connection_id].send_counter++; return 0; } } //case 3: int handle_SYNC3(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum, uint32_t * req_packets, uint16_t number) { uint8_t comp_counter = (connections[connection_id].recv_counter + 1); if((recv_packetnum - connections[connection_id].orecv_packetnum) < MAX_PACKET_NUM && (sent_packetnum - connections[connection_id].osent_packetnum) < MAX_PACKET_NUM && counter == comp_counter) //packet valid { connections[connection_id].orecv_packetnum = recv_packetnum; connections[connection_id].osent_packetnum = sent_packetnum; connections[connection_id].last_recv = current_time(); connections[connection_id].recv_counter = counter; connections[connection_id].send_counter++; memcpy(connections[connection_id].req_packets, req_packets, 4 * number); connections[connection_id].num_req_paquets = number; return 0; } return 1; } int handle_SYNC(char * packet, uint32_t length, IP_Port source) { if(!SYNC_valid(length)) { return 1; } int connection = getconnection_id(source); uint8_t counter; uint32_t recv_packetnum, sent_packetnum; uint32_t req_packets[MAX_PACKET_NUM]; uint16_t number = (length - 4 - 4 - 2)/ 4; memcpy(&counter, packet + 1, 1); memcpy(&recv_packetnum, packet + 2, 4); memcpy(&sent_packetnum,packet + 6, 4); if(number != 0) { memcpy(req_packets, packet + 10, 4 * number); } if(connection == -1) { handle_SYNC1(source, recv_packetnum, sent_packetnum); return 0; } if(connections[connection].status == 2) { handle_SYNC2(connection, counter, recv_packetnum, sent_packetnum); return 0; } if(connections[connection].status == 3) { handle_SYNC3(connection, counter, recv_packetnum, sent_packetnum, req_packets, number); } return 0; } int handle_data(char * packet, uint32_t length, IP_Port source) { } //END of packet handling functions int LosslessUDP_handlepacket(char * packet, uint32_t length, IP_Port source) { switch (packet[0]) { case 16: return handle_handshake(packet, length, source); case 17: return handle_SYNC(packet, length, source); case 18: return handle_data(packet, length, source); default: return 1; } return 0; } //Send handshake requests //TODO: optimize this. //handshake packets are sent at the same rate as SYNC packets void doNew() { uint32_t i; uint64_t temp_time = current_time(); for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 1) { if((connections[i].last_sent + (1000000UL/connections[i].SYNC_rate)) <= temp_time) { send_handshake(connections[i].ip_port, connections[i].handshake_id1, 0); connections[i].last_sent = temp_time; } } //kill all timed out connections if( connections[i].status > 0 && (connections[i].last_recv + CONNEXION_TIMEOUT * 1000000UL) < temp_time) { kill_connection(i); } } } void doSYNC() { uint32_t i; uint64_t temp_time = current_time(); for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 2 || connections[i].status == 3) { if((connections[i].last_SYNC + (1000000UL/connections[i].SYNC_rate)) <= temp_time) { send_SYNC(i); connections[i].last_SYNC = temp_time; } } } } void doData() { } //TODO: flow control. //automatically adjusts send rates of packets for optimal transmission. void adjustRates() { //if() } //Call this function a couple times per second //It's the main loop. void doLossless_UDP() { doNew(); doSYNC(); doData(); adjustRates(); }