/* net_crypto.c * * Functions for the core network crypto. * See also: docs/Crypto.txt * * NOTE: This code has to be perfect. We don't mess around with encryption. * */ #include "net_crypto.h" //Our public and secret keys. uint8_t self_public_key[crypto_box_PUBLICKEYBYTES]; uint8_t self_secret_key[crypto_box_SECRETKEYBYTES]; typedef struct { uint8_t public_key[crypto_box_PUBLICKEYBYTES];//the real public key of the peer. uint8_t recv_nonce[crypto_box_NONCEBYTES];//nonce of recieved packets uint8_t sent_nonce[crypto_box_NONCEBYTES];//nonce of sent packets. uint8_t sessionpublic_key[crypto_box_PUBLICKEYBYTES];//our public key for this session. uint8_t sessionsecret_key[crypto_box_SECRETKEYBYTES];//our private key for this session. uint8_t peersessionpublic_key[crypto_box_PUBLICKEYBYTES];//The public key of the peer. uint8_t status;//0 if no connection, 1 we have sent a handshake, 2 if connexion is not confirmed yet //(we have recieved a hanshake but no empty data packet), 3 if the connection is established. //4 if the connection is timed out. uint16_t number; //Lossless_UDP connection number corresponding to this connection. }Crypto_Connection; #define MAX_CRYPTO_CONNECTIONS 256 Crypto_Connection crypto_connections[MAX_CRYPTO_CONNECTIONS]; #define MAX_FRIEND_REQUESTS 32 //keeps track of the connection numbers for friends request so we can check later if they were sent int outbound_friendrequests[MAX_FRIEND_REQUESTS]; #define MAX_INCOMING 64 //keeps track of the connection numbers for friends request so we can check later if they were sent int incoming_connections[MAX_INCOMING]; //encrypts plain of length length to encrypted of length + 16 using the //public key(32 bytes) of the reciever and the secret key of the sender and a 24 byte nonce //return -1 if there was a problem. //return length of encrypted data if everything was fine. int encrypt_data(uint8_t * public_key, uint8_t * secret_key, uint8_t * nonce, uint8_t * plain, uint32_t length, uint8_t * encrypted) { if(length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES > MAX_DATA_SIZE || length == 0) { return -1; } uint8_t temp_plain[MAX_DATA_SIZE + crypto_box_ZEROBYTES - crypto_box_BOXZEROBYTES] = {0}; uint8_t temp_encrypted[MAX_DATA_SIZE + crypto_box_ZEROBYTES]; uint8_t zeroes[crypto_box_BOXZEROBYTES] = {0}; memcpy(temp_plain + crypto_box_ZEROBYTES, plain, length);//pad the message with 32 0 bytes. crypto_box(temp_encrypted, temp_plain, length + crypto_box_ZEROBYTES, nonce, public_key, secret_key); //if encryption is successful the first crypto_box_BOXZEROBYTES of the message will be zero if(memcmp(temp_encrypted, zeroes, crypto_box_BOXZEROBYTES) != 0) { return -1; } //unpad the encrypted message memcpy(encrypted, temp_encrypted + crypto_box_BOXZEROBYTES, length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES); return length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES; } //decrypts encrypted of length length to plain of length length - 16 using the //public key(32 bytes) of the sender, the secret key of the reciever and a 24 byte nonce //return -1 if there was a problem(decryption failed) //return length of plain data if everything was fine. int decrypt_data(uint8_t * public_key, uint8_t * secret_key, uint8_t * nonce, uint8_t * encrypted, uint32_t length, uint8_t * plain) { if(length > MAX_DATA_SIZE || length <= crypto_box_BOXZEROBYTES) { return -1; } uint8_t temp_plain[MAX_DATA_SIZE - crypto_box_ZEROBYTES + crypto_box_BOXZEROBYTES]; uint8_t temp_encrypted[MAX_DATA_SIZE + crypto_box_ZEROBYTES] = {0}; uint8_t zeroes[crypto_box_ZEROBYTES] = {0}; memcpy(temp_encrypted + crypto_box_BOXZEROBYTES, encrypted, length);//pad the message with 16 0 bytes. if(crypto_box_open(temp_plain, temp_encrypted, length + crypto_box_BOXZEROBYTES, nonce, public_key, secret_key) == -1) { return -1; } //if decryption is successful the first crypto_box_ZEROBYTES of the message will be zero if(memcmp(temp_plain, zeroes, crypto_box_ZEROBYTES) != 0) { return -1; } //unpad the plain message memcpy(plain, temp_plain + crypto_box_ZEROBYTES, length - crypto_box_ZEROBYTES + crypto_box_BOXZEROBYTES); return length - crypto_box_ZEROBYTES + crypto_box_BOXZEROBYTES; } //increment the given nonce by 1 void increment_nonce(uint8_t * nonce) { uint32_t i; for(i = 0; i < crypto_box_NONCEBYTES; i++) { nonce[i]++; if(nonce[i] != 0) { break; } } } //fill the given nonce with random bytes. //TODO: make this more optimized void random_nonce(uint8_t * nonce) { uint32_t i; for(i = 0; i < crypto_box_NONCEBYTES; i++) { nonce[i] = random_int() % 256; } } //return 0 if there is no received data in the buffer //return -1 if the packet was discarded. //return length of recieved data if successful int read_cryptpacket(int crypt_connection_id, uint8_t * data) { if(crypto_connections[crypt_connection_id].status != 3) { return 0; } uint8_t temp_data[MAX_DATA_SIZE]; int length = read_packet(crypto_connections[crypt_connection_id].number, temp_data); if(length == 0) { return 0; } if(temp_data[0] != 3) { return -1; } int len = decrypt_data(crypto_connections[crypt_connection_id].peersessionpublic_key, crypto_connections[crypt_connection_id].sessionsecret_key, crypto_connections[crypt_connection_id].recv_nonce, temp_data + 1, length - 1, data); if(len != -1) { increment_nonce(crypto_connections[crypt_connection_id].recv_nonce); return len; } return -1; } //return 0 if data could not be put in packet queue //return 1 if data was put into the queue int write_cryptpacket(int crypt_connection_id, uint8_t * data, uint32_t length) { if(length - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES > MAX_DATA_SIZE - 1) { return 0; } if(crypto_connections[crypt_connection_id].status != 3) { return 0; } uint8_t temp_data[MAX_DATA_SIZE]; int len = encrypt_data(crypto_connections[crypt_connection_id].peersessionpublic_key, crypto_connections[crypt_connection_id].sessionsecret_key, crypto_connections[crypt_connection_id].sent_nonce, data, length, temp_data + 1); if(len == -1) { return 0; } temp_data[0] = 3; if(write_packet(crypto_connections[crypt_connection_id].number, temp_data, len + 1) == 0) { return 0; } increment_nonce(crypto_connections[crypt_connection_id].sent_nonce); return 1; } //send a friend request to peer with public_key and ip_port. //Data represents the data we send with the friends request. //returns -1 on failure //returns a positive friend request id that can be used later to see if it was sent correctly on success. int send_friendrequest(uint8_t * public_key, IP_Port ip_port, uint8_t * data, uint32_t length) { if(length > MAX_DATA_SIZE - 1 - crypto_box_PUBLICKEYBYTES - crypto_box_NONCEBYTES) { return -1; } uint32_t i; for(i = 0; i < MAX_FRIEND_REQUESTS; i++) { if(outbound_friendrequests[i] == -1) { break; } } if(i == MAX_FRIEND_REQUESTS) { return -1; } uint8_t temp_data[MAX_DATA_SIZE]; uint8_t nonce[crypto_box_NONCEBYTES]; random_nonce(nonce); int len = encrypt_data(public_key, self_secret_key, nonce, data, length, 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + temp_data); if(len == -1) { return -1; } temp_data[0] = 1; memcpy(temp_data + 1, self_public_key, crypto_box_PUBLICKEYBYTES); memcpy(temp_data + 1 + crypto_box_PUBLICKEYBYTES, nonce, crypto_box_NONCEBYTES); int id = new_connection(ip_port); if(id == -1) { return -1; } if(write_packet(id, temp_data, len + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES) == 1) { outbound_friendrequests[i] = id; return i; } return -1; } //return -1 if failure //return 0 if connection is still trying to send the request. //return 1 if sent correctly //return 2 if connection timed out int check_friendrequest(int friend_request) { if(friend_request < 0 || friend_request > MAX_FRIEND_REQUESTS) { return -1; } if(outbound_friendrequests[friend_request] == -1) { return -1; } if(sendqueue(outbound_friendrequests[friend_request]) == 0) { kill_connection(outbound_friendrequests[friend_request]); outbound_friendrequests[friend_request] = -1; return 1; } int status = is_connected(outbound_friendrequests[friend_request]); if(status == 4) { kill_connection(outbound_friendrequests[friend_request]); outbound_friendrequests[friend_request] = -1; return 2; } if(status == 0) { outbound_friendrequests[friend_request] = -1; return 2; } return 0; } //Send a crypto handshake packet containing an encrypted secret nonce and session public key //to peer with connection_id and public_key //the packet is encrypted with a random nonce which is sent in plain text with the packet int send_cryptohandshake(int connection_id, uint8_t * public_key, uint8_t * secret_nonce, uint8_t * session_key) { uint8_t temp_data[MAX_DATA_SIZE]; uint8_t temp[crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES]; uint8_t nonce[crypto_box_NONCEBYTES]; random_nonce(nonce); memcpy(temp, secret_nonce, crypto_box_NONCEBYTES); memcpy(temp + crypto_box_NONCEBYTES, session_key, crypto_box_PUBLICKEYBYTES); int len = encrypt_data(public_key, self_secret_key, nonce, temp, crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES, 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + temp_data); if(len == -1) { return 0; } temp_data[0] = 2; memcpy(temp_data + 1, self_public_key, crypto_box_PUBLICKEYBYTES); memcpy(temp_data + 1 + crypto_box_PUBLICKEYBYTES, nonce, crypto_box_NONCEBYTES); return write_packet(connection_id, temp_data, len + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES); } //Extract secret nonce, session public key and public_key from a packet(data) with length length //return 1 if successful //return 0 if failure int handle_cryptohandshake(uint8_t * public_key, uint8_t * secret_nonce, uint8_t * session_key, uint8_t * data, uint16_t length) { int pad = (- crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES); if(length != 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES + pad) { return 0; } if(data[0] != 2) { return 0; } uint8_t temp[crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES]; memcpy(public_key, data + 1, crypto_box_PUBLICKEYBYTES); int len = decrypt_data(public_key, self_secret_key, data + 1 + crypto_box_PUBLICKEYBYTES, data + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES, crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES + pad, temp); if(len != crypto_box_NONCEBYTES + crypto_box_PUBLICKEYBYTES) { return 0; } memcpy(secret_nonce, temp, crypto_box_NONCEBYTES); memcpy(session_key, temp + crypto_box_NONCEBYTES, crypto_box_PUBLICKEYBYTES); return 1; } //puts the public key of the friend if public_key, the data from the request //in data if a friend request was sent to us and returns the length of the data. //return -1 if no valid friend requests. int handle_friendrequest(uint8_t * public_key, uint8_t * data) { uint32_t i; for(i = 0; i < MAX_INCOMING; i++) { if(incoming_connections[i] != -1) { if(id_packet(incoming_connections[i]) == 1) { uint8_t temp_data[MAX_DATA_SIZE]; uint16_t len = read_packet(incoming_connections[i], temp_data); if(len > crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + 1 - crypto_box_BOXZEROBYTES + crypto_box_ZEROBYTES) { memcpy(public_key, temp_data + 1, crypto_box_PUBLICKEYBYTES); uint8_t nonce[crypto_box_NONCEBYTES]; memcpy(nonce, temp_data + 1 + crypto_box_PUBLICKEYBYTES, crypto_box_NONCEBYTES); int len1 = decrypt_data(public_key, self_secret_key, nonce, temp_data + 1 + crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES, len - (crypto_box_PUBLICKEYBYTES + crypto_box_NONCEBYTES + 1), data); if(len1 != -1) { kill_connection_in(incoming_connections[i], 1); //conection is useless now, kill it in 1 seconds incoming_connections[i] = -1; return len1; } } kill_connection(incoming_connections[i]); //conection is useless now, kill it. incoming_connections[i] = -1; } } } return -1; } //Start a secure connection with other peer who has public_key and ip_port //returns -1 if failure //returns crypt_connection_id of the initialized connection if everything went well. int crypto_connect(uint8_t * public_key, IP_Port ip_port) { uint32_t i; if(getconnection_id(ip_port) != -1) { return -1; } for(i = 0; i < MAX_CRYPTO_CONNECTIONS; i++) { if(crypto_connections[i].status == 0) { int id = new_connection(ip_port); if(id == -1) { return -1; } crypto_connections[i].number = id; crypto_connections[i].status = 1; random_nonce(crypto_connections[i].recv_nonce); memcpy(crypto_connections[i].public_key, public_key, crypto_box_PUBLICKEYBYTES); crypto_box_keypair(crypto_connections[i].sessionpublic_key, crypto_connections[i].sessionsecret_key); if(send_cryptohandshake(id, public_key, crypto_connections[i].recv_nonce, crypto_connections[i].sessionpublic_key) == 1) { increment_nonce(crypto_connections[i].recv_nonce); return i; } return -1;//this should never happen. } } return -1; } //handle an incoming connection //return -1 if no crypto inbound connection //return incomming connection id (Lossless_UDP one) if there is an incomming crypto connection //Put the public key of the peer in public_key, the secret_nonce from the handshake into secret_nonce //and the session public key for the connection in session_key //to accept it see: accept_crypto_inbound(...) //to refuse it just call kill_connection(...) on the connection id int crypto_inbound(uint8_t * public_key, uint8_t * secret_nonce, uint8_t * session_key) { uint32_t i; for(i = 0; i < MAX_INCOMING; i++) { if(incoming_connections[i] != -1) { if(id_packet(incoming_connections[i]) == 2) { uint8_t temp_data[MAX_DATA_SIZE]; uint16_t len = read_packet(incoming_connections[i], temp_data); if(handle_cryptohandshake(public_key, secret_nonce, session_key, temp_data, len)) { int connection_id = incoming_connections[i]; incoming_connections[i] = -1;//remove this connection from the incoming connection list. return connection_id; } } } } return -1; } //kill a crypto connection //return 0 if killed successfully //return 1 if there was a problem. int crypto_kill(int crypt_connection_id) { if(crypt_connection_id < 0 || crypt_connection_id >= MAX_CRYPTO_CONNECTIONS) { return 1; } if(crypto_connections[crypt_connection_id].status != 0) { crypto_connections[crypt_connection_id].status = 0; kill_connection(crypto_connections[crypt_connection_id].number); return 0; } return 1; } //accept an incoming connection using the parameters provided by crypto_inbound //return -1 if not successful //returns the crypt_connection_id if successful int accept_crypto_inbound(int connection_id, uint8_t * public_key, uint8_t * secret_nonce, uint8_t * session_key) { uint32_t i; if(connection_id == -1) { return -1; } for(i = 0; i < MAX_CRYPTO_CONNECTIONS; i++) { if(crypto_connections[i].status == 0) { crypto_connections[i].number = connection_id; crypto_connections[i].status = 2; random_nonce(crypto_connections[i].recv_nonce); memcpy(crypto_connections[i].sent_nonce, secret_nonce, crypto_box_NONCEBYTES); memcpy(crypto_connections[i].peersessionpublic_key, session_key, crypto_box_PUBLICKEYBYTES); increment_nonce(crypto_connections[i].sent_nonce); memcpy(crypto_connections[i].public_key, public_key, crypto_box_PUBLICKEYBYTES); crypto_box_keypair(crypto_connections[i].sessionpublic_key, crypto_connections[i].sessionsecret_key); if(send_cryptohandshake(connection_id, public_key, crypto_connections[i].recv_nonce, crypto_connections[i].sessionpublic_key) == 1) { increment_nonce(crypto_connections[i].recv_nonce); uint32_t zero = 0; crypto_connections[i].status = 3;//connection status needs to be 3 for write_cryptpacket() to work write_cryptpacket(i, ((uint8_t *)&zero), sizeof(zero)); crypto_connections[i].status = 2;//set it to its proper value right after. return i; } return -1;//this should never happen. } } return -1; } //return 0 if no connection, 1 we have sent a handshake, 2 if connexion is not confirmed yet //(we have recieved a hanshake but no empty data packet), 3 if the connection is established. //4 if the connection is timed out and wating to be killed int is_cryptoconnected(int crypt_connection_id) { if(crypt_connection_id >= 0 && crypt_connection_id < MAX_CRYPTO_CONNECTIONS) { return crypto_connections[crypt_connection_id].status; } return 0; } //Generate our public and private keys //Only call this function the first time the program starts. void new_keys() { crypto_box_keypair(self_public_key,self_secret_key); } //TODO: optimize this //adds an incoming connection to the incoming_connection list. //returns 0 if successful //returns 1 if failure int new_incoming(int id) { uint32_t i; for(i = 0; i < MAX_INCOMING; i++) { if(incoming_connections[i] == -1) { incoming_connections[i] = id; return 0; } } return 1; } //TODO: optimize this //handle all new incoming connections. void handle_incomings() { int income; while(1) { income = incoming_connection(); if(income == -1) { break; } if(new_incoming(income)) { break; } } } //handle recieved packets for not yet established crypto connections. void recieve_crypto() { uint32_t i; for(i = 0; i < MAX_CRYPTO_CONNECTIONS; i++) { if(crypto_connections[i].status == 1) { if(id_packet(crypto_connections[i].number) == 2)//handle handshake packet. { uint8_t temp_data[MAX_DATA_SIZE]; uint8_t secret_nonce[crypto_box_NONCEBYTES]; uint8_t public_key[crypto_box_PUBLICKEYBYTES]; uint8_t session_key[crypto_box_PUBLICKEYBYTES]; uint16_t len = read_packet(crypto_connections[i].number, temp_data); if(handle_cryptohandshake(public_key, secret_nonce, session_key, temp_data, len)) { if(memcmp(public_key, crypto_connections[i].public_key, crypto_box_PUBLICKEYBYTES) == 0) { memcpy(crypto_connections[i].sent_nonce, secret_nonce, crypto_box_NONCEBYTES); memcpy(crypto_connections[i].peersessionpublic_key, session_key, crypto_box_PUBLICKEYBYTES); increment_nonce(crypto_connections[i].sent_nonce); uint32_t zero = 0; crypto_connections[i].status = 3;//connection status needs to be 3 for write_cryptpacket() to work write_cryptpacket(i, ((uint8_t *)&zero), sizeof(zero)); crypto_connections[i].status = 2;//set it to its proper value right after. } } } else if(id_packet(crypto_connections[i].number) != -1) { //This should not happen //kill the connection if it does crypto_kill(crypto_connections[i].number); } } if(crypto_connections[i].status == 2) { if(id_packet(crypto_connections[i].number) == 3) { uint8_t temp_data[MAX_DATA_SIZE]; uint8_t data[MAX_DATA_SIZE]; int length = read_packet(crypto_connections[i].number, temp_data); int len = decrypt_data(crypto_connections[i].peersessionpublic_key, crypto_connections[i].sessionsecret_key, crypto_connections[i].recv_nonce, temp_data + 1, length - 1, data); uint32_t zero = 0; if(len == sizeof(uint32_t) && memcmp(((uint8_t *)&zero), data, sizeof(uint32_t)) == 0) { increment_nonce(crypto_connections[i].recv_nonce); crypto_connections[i].status = 3; } else { //This should not happen //kill the connection if it does crypto_kill(crypto_connections[i].number); } } else if(id_packet(crypto_connections[i].number) != -1) { //This should not happen //kill the connection if it does crypto_kill(crypto_connections[i].number); } } } } //run this to (re)initialize net_crypto //sets all the global connection variables to their default values. void initNetCrypto() { memset(crypto_connections, 0 ,sizeof(crypto_connections)); memset(outbound_friendrequests, -1 ,sizeof(outbound_friendrequests)); memset(incoming_connections, -1 ,sizeof(incoming_connections)); } void killTimedout() { uint32_t i; for(i = 0; i < MAX_CRYPTO_CONNECTIONS; i++) { if(is_connected(crypto_connections[i].number) == 4) { crypto_connections[i].status = 4; } } } //main loop void doNetCrypto() { //TODO:check if friend requests were sent correctly //handle new incoming connections //handle friend requests handle_incomings(); recieve_crypto(); killTimedout(); }