/* * crypto_core/try.c version 20090118 * D. J. Bernstein * Public domain. */ #include #include "crypto_core.h" extern unsigned char *alignedcalloc(unsigned long long); const char *primitiveimplementation = crypto_core_IMPLEMENTATION; static unsigned char *h; static unsigned char *n; static unsigned char *k; static unsigned char *c; static unsigned char *h2; static unsigned char *n2; static unsigned char *k2; static unsigned char *c2; #define hlen crypto_core_OUTPUTBYTES #define nlen crypto_core_INPUTBYTES #define klen crypto_core_KEYBYTES #define clen crypto_core_CONSTBYTES void preallocate(void) { } void allocate(void) { h = alignedcalloc(hlen); n = alignedcalloc(nlen); k = alignedcalloc(klen); c = alignedcalloc(clen); h2 = alignedcalloc(hlen); n2 = alignedcalloc(nlen + crypto_core_OUTPUTBYTES); k2 = alignedcalloc(klen + crypto_core_OUTPUTBYTES); c2 = alignedcalloc(clen + crypto_core_OUTPUTBYTES); } void predoit(void) { } void doit(void) { crypto_core(h,n,k,c); } static unsigned char newbyte(void) { unsigned long long x; long long j; x = 8675309; for (j = 0;j < hlen;++j) { x += h[j]; x *= x; x += (x >> 31); } for (j = 0;j < nlen;++j) { x += n[j]; x *= x; x += (x >> 31); } for (j = 0;j < klen;++j) { x += k[j]; x *= x; x += (x >> 31); } for (j = 0;j < clen;++j) { x += c[j]; x *= x; x += (x >> 31); } for (j = 0;j < 100;++j) { x += j ; x *= x; x += (x >> 31); } return x; } char checksum[hlen * 2 + 1]; const char *checksum_compute(void) { long long i; long long j; for (i = 0;i < 100;++i) { for (j = -16;j < 0;++j) h[j] = random(); for (j = hlen;j < hlen + 16;++j) h[j] = random(); for (j = -16;j < hlen + 16;++j) h2[j] = h[j]; for (j = -16;j < 0;++j) n[j] = random(); for (j = nlen;j < nlen + 16;++j) n[j] = random(); for (j = -16;j < nlen + 16;++j) n2[j] = n[j]; for (j = -16;j < 0;++j) k[j] = random(); for (j = klen;j < klen + 16;++j) k[j] = random(); for (j = -16;j < klen + 16;++j) k2[j] = k[j]; for (j = -16;j < 0;++j) c[j] = random(); for (j = clen;j < clen + 16;++j) c[j] = random(); for (j = -16;j < clen + 16;++j) c2[j] = c[j]; if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero"; for (j = -16;j < 0;++j) if (h2[j] != h[j]) return "crypto_core writes before output"; for (j = hlen;j < hlen + 16;++j) if (h2[j] != h[j]) return "crypto_core writes after output"; for (j = -16;j < klen + 16;++j) if (k2[j] != k[j]) return "crypto_core writes to k"; for (j = -16;j < nlen + 16;++j) if (n2[j] != n[j]) return "crypto_core writes to n"; for (j = -16;j < clen + 16;++j) if (c2[j] != c[j]) return "crypto_core writes to c"; if (crypto_core(n2,n2,k,c) != 0) return "crypto_core returns nonzero"; for (j = 0;j < hlen;++j) if (h[j] != n2[j]) return "crypto_core does not handle n overlap"; for (j = 0;j < hlen;++j) n2[j] = n[j]; if (crypto_core(k2,n2,k2,c) != 0) return "crypto_core returns nonzero"; for (j = 0;j < hlen;++j) if (h[j] != k2[j]) return "crypto_core does not handle k overlap"; for (j = 0;j < hlen;++j) k2[j] = k[j]; if (crypto_core(c2,n2,k2,c2) != 0) return "crypto_core returns nonzero"; for (j = 0;j < hlen;++j) if (h[j] != c2[j]) return "crypto_core does not handle c overlap"; for (j = 0;j < hlen;++j) c2[j] = c[j]; for (j = 0;j < nlen;++j) n[j] = newbyte(); if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero"; for (j = 0;j < klen;++j) k[j] = newbyte(); if (crypto_core(h,n,k,c) != 0) return "crypto_core returns nonzero"; for (j = 0;j < clen;++j) c[j] = newbyte(); } for (i = 0;i < hlen;++i) { checksum[2 * i] = "0123456789abcdef"[15 & (h[i] >> 4)]; checksum[2 * i + 1] = "0123456789abcdef"[15 & h[i]]; } checksum[2 * i] = 0; return 0; }