#include "fe25519.h" #define WINDOWSIZE 4 /* Should be 1,2, or 4 */ #define WINDOWMASK ((1<v[31] >> 7; r->v[31] &= 127; t *= 19; r->v[0] += t; for(i=0;i<31;i++) { t = r->v[i] >> 8; r->v[i+1] += t; r->v[i] &= 255; } } } static void reduce_mul(fe25519 *r) { crypto_uint32 t; int i,rep; for(rep=0;rep<2;rep++) { t = r->v[31] >> 7; r->v[31] &= 127; t *= 19; r->v[0] += t; for(i=0;i<31;i++) { t = r->v[i] >> 8; r->v[i+1] += t; r->v[i] &= 255; } } } /* reduction modulo 2^255-19 */ static void freeze(fe25519 *r) { int i; unsigned int m = (r->v[31] == 127); for(i=30;i>1;i--) m *= (r->v[i] == 255); m *= (r->v[0] >= 237); r->v[31] -= m*127; for(i=30;i>0;i--) r->v[i] -= m*255; r->v[0] -= m*237; } /*freeze input before calling isone*/ static int isone(const fe25519 *x) { int i; int r = (x->v[0] == 1); for(i=1;i<32;i++) r *= (x->v[i] == 0); return r; } /*freeze input before calling iszero*/ static int iszero(const fe25519 *x) { int i; int r = (x->v[0] == 0); for(i=1;i<32;i++) r *= (x->v[i] == 0); return r; } static int issquare(const fe25519 *x) { unsigned char e[32] = {0xf6,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x3f}; /* (p-1)/2 */ fe25519 t; fe25519_pow(&t,x,e); freeze(&t); return isone(&t) || iszero(&t); } void fe25519_unpack(fe25519 *r, const unsigned char x[32]) { int i; for(i=0;i<32;i++) r->v[i] = x[i]; r->v[31] &= 127; } /* Assumes input x being reduced mod 2^255 */ void fe25519_pack(unsigned char r[32], const fe25519 *x) { int i; for(i=0;i<32;i++) r[i] = x->v[i]; /* freeze byte array */ unsigned int m = (r[31] == 127); /* XXX: some compilers might use branches; fix */ for(i=30;i>1;i--) m *= (r[i] == 255); m *= (r[0] >= 237); r[31] -= m*127; for(i=30;i>0;i--) r[i] -= m*255; r[0] -= m*237; } void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b) { unsigned char nb = 1-b; int i; for(i=0;i<32;i++) r->v[i] = nb * r->v[i] + b * x->v[i]; } unsigned char fe25519_getparity(const fe25519 *x) { fe25519 t; int i; for(i=0;i<32;i++) t.v[i] = x->v[i]; freeze(&t); return t.v[0] & 1; } void fe25519_setone(fe25519 *r) { int i; r->v[0] = 1; for(i=1;i<32;i++) r->v[i]=0; } void fe25519_setzero(fe25519 *r) { int i; for(i=0;i<32;i++) r->v[i]=0; } void fe25519_neg(fe25519 *r, const fe25519 *x) { fe25519 t; int i; for(i=0;i<32;i++) t.v[i]=x->v[i]; fe25519_setzero(r); fe25519_sub(r, r, &t); } void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y) { int i; for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i]; reduce_add_sub(r); } void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y) { int i; crypto_uint32 t[32]; t[0] = x->v[0] + 0x1da; t[31] = x->v[31] + 0xfe; for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe; for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i]; reduce_add_sub(r); } void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y) { int i,j; crypto_uint32 t[63]; for(i=0;i<63;i++)t[i] = 0; for(i=0;i<32;i++) for(j=0;j<32;j++) t[i+j] += x->v[i] * y->v[j]; for(i=32;i<63;i++) r->v[i-32] = t[i-32] + 38*t[i]; r->v[31] = t[31]; /* result now in r[0]...r[31] */ reduce_mul(r); } void fe25519_square(fe25519 *r, const fe25519 *x) { fe25519_mul(r, x, x); } /*XXX: Make constant time! */ void fe25519_pow(fe25519 *r, const fe25519 *x, const unsigned char *e) { /* fe25519 g; fe25519_setone(&g); int i; unsigned char j; for(i=32;i>0;i--) { for(j=128;j>0;j>>=1) { fe25519_square(&g,&g); if(e[i-1] & j) fe25519_mul(&g,&g,x); } } for(i=0;i<32;i++) r->v[i] = g.v[i]; */ fe25519 g; fe25519_setone(&g); int i,j,k; fe25519 pre[(1 << WINDOWSIZE)]; fe25519 t; unsigned char w; // Precomputation fe25519_setone(pre); pre[1] = *x; for(i=2;i<(1<0;i--) { for(j=8-WINDOWSIZE;j>=0;j-=WINDOWSIZE) { for(k=0;k>j) & WINDOWMASK; t = pre[0]; for(k=1;k<(1<v[i]; fe25519_pow(&d,&d,e3); for(i=0;i<32;i++) r->v[i] = 2*x->v[i]; fe25519_mul(r,r,&d); } freeze(r); if((r->v[0] & 1) != (parity & 1)) { fe25519_sub(r,&p,r); } return 0; } void fe25519_invert(fe25519 *r, const fe25519 *x) { fe25519 z2; fe25519 z9; fe25519 z11; fe25519 z2_5_0; fe25519 z2_10_0; fe25519 z2_20_0; fe25519 z2_50_0; fe25519 z2_100_0; fe25519 t0; fe25519 t1; int i; /* 2 */ fe25519_square(&z2,x); /* 4 */ fe25519_square(&t1,&z2); /* 8 */ fe25519_square(&t0,&t1); /* 9 */ fe25519_mul(&z9,&t0,x); /* 11 */ fe25519_mul(&z11,&z9,&z2); /* 22 */ fe25519_square(&t0,&z11); /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9); /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0); /* 2^7 - 2^2 */ fe25519_square(&t1,&t0); /* 2^8 - 2^3 */ fe25519_square(&t0,&t1); /* 2^9 - 2^4 */ fe25519_square(&t1,&t0); /* 2^10 - 2^5 */ fe25519_square(&t0,&t1); /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0); /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0); /* 2^12 - 2^2 */ fe25519_square(&t1,&t0); /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0); /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0); /* 2^22 - 2^2 */ fe25519_square(&t1,&t0); /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0); /* 2^41 - 2^1 */ fe25519_square(&t1,&t0); /* 2^42 - 2^2 */ fe25519_square(&t0,&t1); /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); } /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0); /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0); /* 2^52 - 2^2 */ fe25519_square(&t1,&t0); /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0); /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0); /* 2^102 - 2^2 */ fe25519_square(&t0,&t1); /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); } /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0); /* 2^201 - 2^1 */ fe25519_square(&t0,&t1); /* 2^202 - 2^2 */ fe25519_square(&t1,&t0); /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0); /* 2^251 - 2^1 */ fe25519_square(&t1,&t0); /* 2^252 - 2^2 */ fe25519_square(&t0,&t1); /* 2^253 - 2^3 */ fe25519_square(&t1,&t0); /* 2^254 - 2^4 */ fe25519_square(&t0,&t1); /* 2^255 - 2^5 */ fe25519_square(&t1,&t0); /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11); }