/* SPDX-License-Identifier: GPL-3.0-or-later * Copyright © 2016-2018 The TokTok team. * Copyright © 2013 Tox project. */ /* * LAN discovery implementation. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "LAN_discovery.h" #include #include "util.h" #define MAX_INTERFACES 16 /* TODO: multiple threads might concurrently try to set these, and it isn't clear that this couldn't lead to undesirable * behaviour. Consider storing the data in per-instance variables instead. */ //!TOKSTYLE- // No global mutable state in Tokstyle. static int broadcast_count = -1; static IP_Port broadcast_ip_ports[MAX_INTERFACES]; //!TOKSTYLE+ #if defined(_WIN32) || defined(__WIN32__) || defined(WIN32) // The mingw32/64 Windows library warns about including winsock2.h after // windows.h even though with the above it's a valid thing to do. So, to make // mingw32 headers happy, we include winsock2.h first. #include #include #include #include static void fetch_broadcast_info(uint16_t port) { IP_ADAPTER_INFO *pAdapterInfo = (IP_ADAPTER_INFO *)malloc(sizeof(IP_ADAPTER_INFO)); unsigned long ulOutBufLen = sizeof(IP_ADAPTER_INFO); if (pAdapterInfo == nullptr) { return; } if (GetAdaptersInfo(pAdapterInfo, &ulOutBufLen) == ERROR_BUFFER_OVERFLOW) { free(pAdapterInfo); pAdapterInfo = (IP_ADAPTER_INFO *)malloc(ulOutBufLen); if (pAdapterInfo == nullptr) { return; } } /* We copy these to the static variables `broadcast_*` only at the end of `fetch_broadcast_info()`. * The intention is to ensure that even if multiple threads enter `fetch_broadcast_info()` concurrently, only valid * interfaces will be set to be broadcast to. * */ int count = 0; IP_Port ip_ports[MAX_INTERFACES]; const int ret = GetAdaptersInfo(pAdapterInfo, &ulOutBufLen); if (ret == NO_ERROR) { IP_ADAPTER_INFO *pAdapter = pAdapterInfo; while (pAdapter) { IP gateway = {0}; IP subnet_mask = {0}; if (addr_parse_ip(pAdapter->IpAddressList.IpMask.String, &subnet_mask) && addr_parse_ip(pAdapter->GatewayList.IpAddress.String, &gateway)) { if (net_family_is_ipv4(gateway.family) && net_family_is_ipv4(subnet_mask.family)) { IP_Port *ip_port = &ip_ports[count]; ip_port->ip.family = net_family_ipv4; uint32_t gateway_ip = net_ntohl(gateway.ip.v4.uint32); uint32_t subnet_ip = net_ntohl(subnet_mask.ip.v4.uint32); uint32_t broadcast_ip = gateway_ip + ~subnet_ip - 1; ip_port->ip.ip.v4.uint32 = net_htonl(broadcast_ip); ip_port->port = port; ++count; if (count >= MAX_INTERFACES) { break; } } } pAdapter = pAdapter->Next; } } if (pAdapterInfo) { free(pAdapterInfo); } broadcast_count = count; for (uint32_t i = 0; i < count; ++i) { broadcast_ip_ports[i] = ip_ports[i]; } } #elif defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__) #include #include #include #include #include #ifdef __linux__ #include #endif #if defined(__FreeBSD__) || defined(__DragonFly__) #include #endif static void fetch_broadcast_info(uint16_t port) { /* Not sure how many platforms this will run on, * so it's wrapped in `__linux__` for now. * Definitely won't work like this on Windows... */ broadcast_count = 0; const Socket sock = net_socket(net_family_ipv4, TOX_SOCK_STREAM, 0); if (!sock_valid(sock)) { return; } /* Configure ifconf for the ioctl call. */ struct ifreq i_faces[MAX_INTERFACES]; memset(i_faces, 0, sizeof(struct ifreq) * MAX_INTERFACES); struct ifconf ifc; ifc.ifc_buf = (char *)i_faces; ifc.ifc_len = sizeof(i_faces); if (ioctl(sock.socket, SIOCGIFCONF, &ifc) < 0) { kill_sock(sock); return; } /* We copy these to the static variables `broadcast_*` only at the end of `fetch_broadcast_info()`. * The intention is to ensure that even if multiple threads enter `fetch_broadcast_info()` concurrently, only valid * interfaces will be set to be broadcast to. * */ int count = 0; IP_Port ip_ports[MAX_INTERFACES]; /* `ifc.ifc_len` is set by the `ioctl()` to the actual length used. * On usage of the complete array the call should be repeated with * a larger array, not done (640kB and 16 interfaces shall be * enough, for everybody!) */ int n = ifc.ifc_len / sizeof(struct ifreq); for (int i = 0; i < n; ++i) { /* there are interfaces with are incapable of broadcast */ if (ioctl(sock.socket, SIOCGIFBRDADDR, &i_faces[i]) < 0) { continue; } /* moot check: only AF_INET returned (backwards compat.) */ if (i_faces[i].ifr_broadaddr.sa_family != AF_INET) { continue; } struct sockaddr_in *sock4 = (struct sockaddr_in *)(void *)&i_faces[i].ifr_broadaddr; if (count >= MAX_INTERFACES) { break; } IP_Port *ip_port = &ip_ports[count]; ip_port->ip.family = net_family_ipv4; ip_port->ip.ip.v4.uint32 = sock4->sin_addr.s_addr; if (ip_port->ip.ip.v4.uint32 == 0) { continue; } ip_port->port = port; ++count; } kill_sock(sock); broadcast_count = count; for (uint32_t i = 0; i < count; ++i) { broadcast_ip_ports[i] = ip_ports[i]; } } #else // TODO(irungentoo): Other platforms? static void fetch_broadcast_info(uint16_t port) { broadcast_count = 0; } #endif /* Send packet to all IPv4 broadcast addresses * * return 1 if sent to at least one broadcast target. * return 0 on failure to find any valid broadcast target. */ static uint32_t send_broadcasts(Networking_Core *net, uint16_t port, const uint8_t *data, uint16_t length) { /* fetch only once? on every packet? every X seconds? * old: every packet, new: once */ if (broadcast_count < 0) { fetch_broadcast_info(port); } if (!broadcast_count) { return 0; } for (int i = 0; i < broadcast_count; ++i) { sendpacket(net, broadcast_ip_ports[i], data, length); } return 1; } /* Return the broadcast ip. */ static IP broadcast_ip(Family family_socket, Family family_broadcast) { IP ip; ip_reset(&ip); if (net_family_is_ipv6(family_socket)) { if (net_family_is_ipv6(family_broadcast)) { ip.family = net_family_ipv6; /* `FF02::1` is - according to RFC 4291 - multicast all-nodes link-local */ /* `FE80::*:` MUST be exact, for that we would need to look over all * interfaces and check in which status they are */ ip.ip.v6.uint8[ 0] = 0xFF; ip.ip.v6.uint8[ 1] = 0x02; ip.ip.v6.uint8[15] = 0x01; } else if (net_family_is_ipv4(family_broadcast)) { ip.family = net_family_ipv6; ip.ip.v6 = ip6_broadcast; } } else if (net_family_is_ipv4(family_socket) && net_family_is_ipv4(family_broadcast)) { ip.family = net_family_ipv4; ip.ip.v4 = ip4_broadcast; } return ip; } static bool ip4_is_local(IP4 ip4) { /* Loopback. */ return ip4.uint8[0] == 127; } /* Is IP a local ip or not. */ bool ip_is_local(IP ip) { if (net_family_is_ipv4(ip.family)) { return ip4_is_local(ip.ip.v4); } /* embedded IPv4-in-IPv6 */ if (ipv6_ipv4_in_v6(ip.ip.v6)) { IP4 ip4; ip4.uint32 = ip.ip.v6.uint32[3]; return ip4_is_local(ip4); } /* localhost in IPv6 (::1) */ if (ip.ip.v6.uint64[0] == 0 && ip.ip.v6.uint32[2] == 0 && ip.ip.v6.uint32[3] == net_htonl(1)) { return true; } return false; } static bool ip4_is_lan(IP4 ip4) { /* 10.0.0.0 to 10.255.255.255 range. */ if (ip4.uint8[0] == 10) { return true; } /* 172.16.0.0 to 172.31.255.255 range. */ if (ip4.uint8[0] == 172 && ip4.uint8[1] >= 16 && ip4.uint8[1] <= 31) { return true; } /* 192.168.0.0 to 192.168.255.255 range. */ if (ip4.uint8[0] == 192 && ip4.uint8[1] == 168) { return true; } /* 169.254.1.0 to 169.254.254.255 range. */ if (ip4.uint8[0] == 169 && ip4.uint8[1] == 254 && ip4.uint8[2] != 0 && ip4.uint8[2] != 255) { return true; } /* RFC 6598: 100.64.0.0 to 100.127.255.255 (100.64.0.0/10) * (shared address space to stack another layer of NAT) */ if ((ip4.uint8[0] == 100) && ((ip4.uint8[1] & 0xC0) == 0x40)) { return true; } return false; } bool ip_is_lan(IP ip) { if (ip_is_local(ip)) { return true; } if (net_family_is_ipv4(ip.family)) { return ip4_is_lan(ip.ip.v4); } if (net_family_is_ipv6(ip.family)) { /* autogenerated for each interface: `FE80::*` (up to `FEBF::*`) * `FF02::1` is - according to RFC 4291 - multicast all-nodes link-local */ if (((ip.ip.v6.uint8[0] == 0xFF) && (ip.ip.v6.uint8[1] < 3) && (ip.ip.v6.uint8[15] == 1)) || ((ip.ip.v6.uint8[0] == 0xFE) && ((ip.ip.v6.uint8[1] & 0xC0) == 0x80))) { return true; } /* embedded IPv4-in-IPv6 */ if (ipv6_ipv4_in_v6(ip.ip.v6)) { IP4 ip4; ip4.uint32 = ip.ip.v6.uint32[3]; return ip4_is_lan(ip4); } } return false; } static int handle_LANdiscovery(void *object, IP_Port source, const uint8_t *packet, uint16_t length, void *userdata) { DHT *dht = (DHT *)object; char ip_str[IP_NTOA_LEN] = { 0 }; ip_ntoa(&source.ip, ip_str, sizeof(ip_str)); if (!ip_is_lan(source.ip)) { return 1; } if (length != CRYPTO_PUBLIC_KEY_SIZE + 1) { return 1; } dht_bootstrap(dht, source, packet + 1); return 0; } int lan_discovery_send(uint16_t port, DHT *dht) { uint8_t data[CRYPTO_PUBLIC_KEY_SIZE + 1]; data[0] = NET_PACKET_LAN_DISCOVERY; id_copy(data + 1, dht_get_self_public_key(dht)); send_broadcasts(dht_get_net(dht), port, data, 1 + CRYPTO_PUBLIC_KEY_SIZE); int res = -1; IP_Port ip_port; ip_port.port = port; /* IPv6 multicast */ if (net_family_is_ipv6(net_family(dht_get_net(dht)))) { ip_port.ip = broadcast_ip(net_family_ipv6, net_family_ipv6); if (ip_isset(&ip_port.ip)) { if (sendpacket(dht_get_net(dht), ip_port, data, 1 + CRYPTO_PUBLIC_KEY_SIZE) > 0) { res = 1; } } } /* IPv4 broadcast (has to be IPv4-in-IPv6 mapping if socket is IPv6 */ ip_port.ip = broadcast_ip(net_family(dht_get_net(dht)), net_family_ipv4); if (ip_isset(&ip_port.ip)) { if (sendpacket(dht_get_net(dht), ip_port, data, 1 + CRYPTO_PUBLIC_KEY_SIZE)) { res = 1; } } return res; } void lan_discovery_init(DHT *dht) { networking_registerhandler(dht_get_net(dht), NET_PACKET_LAN_DISCOVERY, &handle_LANdiscovery, dht); } void lan_discovery_kill(DHT *dht) { networking_registerhandler(dht_get_net(dht), NET_PACKET_LAN_DISCOVERY, nullptr, nullptr); }