%{
/*
* Functions for the core crypto.
*/
/*
* Copyright © 2016-2017 The TokTok team.
* Copyright © 2013 Tox project.
*
* This file is part of Tox, the free peer to peer instant messenger.
*
* Tox is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Tox is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Tox. If not, see .
*/
#ifndef CRYPTO_CORE_H
#define CRYPTO_CORE_H
#include
#include
#include
#ifdef __cplusplus
extern "C" {
#endif
%}
/**
* The number of bytes in a Tox public key.
*/
const CRYPTO_PUBLIC_KEY_SIZE = 32;
/**
* The number of bytes in a Tox secret key.
*/
const CRYPTO_SECRET_KEY_SIZE = 32;
/**
* The number of bytes in a shared key computed from public and secret keys.
*/
const CRYPTO_SHARED_KEY_SIZE = 32;
/**
* The number of bytes in a symmetric key.
*/
const CRYPTO_SYMMETRIC_KEY_SIZE = CRYPTO_SHARED_KEY_SIZE;
/**
* The number of bytes needed for the MAC (message authentication code) in an
* encrypted message.
*/
const CRYPTO_MAC_SIZE = 16;
/**
* The number of bytes in a nonce used for encryption/decryption.
*/
const CRYPTO_NONCE_SIZE = 24;
/**
* The number of bytes in a SHA256 hash.
*/
const CRYPTO_SHA256_SIZE = 32;
/**
* The number of bytes in a SHA512 hash.
*/
const CRYPTO_SHA512_SIZE = 64;
/**
* A `memcmp`-like function whose running time does not depend on the input
* bytes, only on the input length. Useful to compare sensitive data where
* timing attacks could reveal that data.
*
* This means for instance that comparing "aaaa" and "aaaa" takes 4 time, and
* "aaaa" and "baaa" also takes 4 time. With a regular `memcmp`, the latter may
* take 1 time, because it immediately knows that the two strings are not equal.
*/
static int32_t crypto_memcmp(const void *p1, const void *p2, size_t length);
/**
* A `bzero`-like function which won't be optimised away by the compiler. Some
* compilers will inline `bzero` or `memset` if they can prove that there will
* be no reads to the written data. Use this function if you want to be sure the
* memory is indeed zeroed.
*/
static void crypto_memzero(void *data, size_t length);
/**
* Compute a SHA256 hash (32 bytes).
*/
static void crypto_sha256(uint8_t[CRYPTO_SHA256_SIZE] hash, const uint8_t[length] data);
/**
* Compute a SHA512 hash (64 bytes).
*/
static void crypto_sha512(uint8_t[CRYPTO_SHA512_SIZE] hash, const uint8_t[length] data);
/**
* Compare 2 public keys of length CRYPTO_PUBLIC_KEY_SIZE, not vulnerable to
* timing attacks.
*
* @return 0 if both mem locations of length are equal, -1 if they are not.
*/
static int32_t public_key_cmp(
const uint8_t[CRYPTO_PUBLIC_KEY_SIZE] pk1,
const uint8_t[CRYPTO_PUBLIC_KEY_SIZE] pk2);
namespace random {
/**
* Return a random 8 bit integer.
*/
static uint8_t u08();
/**
* Return a random 16 bit integer.
*/
static uint16_t u16();
/**
* Return a random 32 bit integer.
*/
static uint32_t u32();
/**
* Return a random 64 bit integer.
*/
static uint64_t u64();
/**
* Fill the given nonce with random bytes.
*/
static void nonce(uint8_t[CRYPTO_NONCE_SIZE] nonce);
/**
* Fill an array of bytes with random values.
*/
static void bytes(uint8_t[length] bytes);
}
/**
* Check if a Tox public key CRYPTO_PUBLIC_KEY_SIZE is valid or not. This
* should only be used for input validation.
*
* @return false if it isn't, true if it is.
*/
static bool public_key_valid(const uint8_t[CRYPTO_PUBLIC_KEY_SIZE] public_key);
/**
* Generate a new random keypair. Every call to this function is likely to
* generate a different keypair.
*/
static int32_t crypto_new_keypair(
uint8_t[CRYPTO_PUBLIC_KEY_SIZE] public_key,
uint8_t[CRYPTO_SECRET_KEY_SIZE] secret_key);
/**
* Derive the public key from a given secret key.
*/
static void crypto_derive_public_key(
uint8_t[CRYPTO_PUBLIC_KEY_SIZE] public_key,
const uint8_t[CRYPTO_SECRET_KEY_SIZE] secret_key);
/**
* Encrypt plain text of the given length to encrypted of length +
* $CRYPTO_MAC_SIZE using the public key ($CRYPTO_PUBLIC_KEY_SIZE bytes) of the
* receiver and the secret key of the sender and a $CRYPTO_NONCE_SIZE byte
* nonce.
*
* @return -1 if there was a problem, length of encrypted data if everything
* was fine.
*/
static int32_t encrypt_data(
const uint8_t[CRYPTO_PUBLIC_KEY_SIZE] public_key,
const uint8_t[CRYPTO_SECRET_KEY_SIZE] secret_key,
const uint8_t[CRYPTO_NONCE_SIZE] nonce,
const uint8_t[length] plain,
uint8_t *encrypted);
/**
* Decrypt encrypted text of the given length to plain text of the given length
* - $CRYPTO_MAC_SIZE using the public key ($CRYPTO_PUBLIC_KEY_SIZE bytes) of
* the sender, the secret key of the receiver and a $CRYPTO_NONCE_SIZE byte
* nonce.
*
* @return -1 if there was a problem (decryption failed), length of plain text
* data if everything was fine.
*/
static int32_t decrypt_data(
const uint8_t[CRYPTO_PUBLIC_KEY_SIZE] public_key,
const uint8_t[CRYPTO_SECRET_KEY_SIZE] secret_key,
const uint8_t[CRYPTO_NONCE_SIZE] nonce,
const uint8_t[length] encrypted,
uint8_t *plain);
/**
* Fast encrypt/decrypt operations. Use if this is not a one-time communication.
* $encrypt_precompute does the shared-key generation once so it does not have
* to be preformed on every encrypt/decrypt.
*/
static int32_t encrypt_precompute(
const uint8_t[CRYPTO_PUBLIC_KEY_SIZE] public_key,
const uint8_t[CRYPTO_SECRET_KEY_SIZE] secret_key,
uint8_t[CRYPTO_SHARED_KEY_SIZE] shared_key);
/**
* Encrypts plain of length length to encrypted of length + $CRYPTO_MAC_SIZE
* using a shared key $CRYPTO_SYMMETRIC_KEY_SIZE big and a $CRYPTO_NONCE_SIZE
* byte nonce.
*
* @return -1 if there was a problem, length of encrypted data if everything
* was fine.
*/
static int32_t encrypt_data_symmetric(
const uint8_t[CRYPTO_SHARED_KEY_SIZE] shared_key,
const uint8_t[CRYPTO_NONCE_SIZE] nonce,
const uint8_t[length] plain,
uint8_t *encrypted);
/**
* Decrypts encrypted of length length to plain of length length -
* $CRYPTO_MAC_SIZE using a shared key CRYPTO_SHARED_KEY_SIZE big and a
* $CRYPTO_NONCE_SIZE byte nonce.
*
* @return -1 if there was a problem (decryption failed), length of plain data
* if everything was fine.
*/
static int32_t decrypt_data_symmetric(
const uint8_t[CRYPTO_SHARED_KEY_SIZE] shared_key,
const uint8_t[CRYPTO_NONCE_SIZE] nonce,
const uint8_t[length] encrypted,
uint8_t *plain);
/**
* Increment the given nonce by 1 in big endian (rightmost byte incremented
* first).
*/
static void increment_nonce(uint8_t[CRYPTO_NONCE_SIZE] nonce);
/**
* Increment the given nonce by a given number. The number should be in host
* byte order.
*/
static void increment_nonce_number(uint8_t[CRYPTO_NONCE_SIZE] nonce, uint32_t host_order_num);
/**
* Fill a key CRYPTO_SYMMETRIC_KEY_SIZE big with random bytes.
*/
static void new_symmetric_key(uint8_t[CRYPTO_SYMMETRIC_KEY_SIZE] key);
%{
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* CRYPTO_CORE_H */
%}