/*
* Functions for the core networking.
*/
/*
* Copyright © 2016-2018 The TokTok team.
* Copyright © 2013 Tox project.
*
* This file is part of Tox, the free peer to peer instant messenger.
*
* Tox is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Tox is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Tox. If not, see .
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef __APPLE__
#define _DARWIN_C_SOURCE
#endif
// For Solaris.
#ifdef __sun
#define __EXTENSIONS__ 1
#endif
// For Linux (and some BSDs).
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 700
#endif
#if defined(_WIN32) && _WIN32_WINNT >= _WIN32_WINNT_WINXP
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x501
#endif
#if !defined(OS_WIN32) && (defined(_WIN32) || defined(__WIN32__) || defined(WIN32))
#define OS_WIN32
#endif
#ifdef OS_WIN32
#ifndef WINVER
// Windows XP
#define WINVER 0x0501
#endif
#endif
#ifdef PLAN9
#include // Plan 9 requires this is imported first
// Comment line here to avoid reordering by source code formatters.
#include
#endif
#ifdef OS_WIN32 /* Put win32 includes here */
// The mingw32/64 Windows library warns about including winsock2.h after
// windows.h even though with the above it's a valid thing to do. So, to make
// mingw32 headers happy, we include winsock2.h first.
#include
// Comment line here to avoid reordering by source code formatters.
#include
#include
#endif
#include "network.h"
#ifdef __APPLE__
#include
#include
#endif
#if !defined(OS_WIN32)
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef __sun
#include
#include
#endif
#define TOX_EWOULDBLOCK EWOULDBLOCK
#else
#ifndef IPV6_V6ONLY
#define IPV6_V6ONLY 27
#endif
#define TOX_EWOULDBLOCK WSAEWOULDBLOCK
static const char *inet_ntop(int family, const void *addr, char *buf, size_t bufsize)
{
if (family == AF_INET) {
struct sockaddr_in saddr;
memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr = *(const struct in_addr *)addr;
DWORD len = bufsize;
if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) {
return nullptr;
}
return buf;
} else if (family == AF_INET6) {
struct sockaddr_in6 saddr;
memset(&saddr, 0, sizeof(saddr));
saddr.sin6_family = AF_INET6;
saddr.sin6_addr = *(const struct in6_addr *)addr;
DWORD len = bufsize;
if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) {
return nullptr;
}
return buf;
}
return nullptr;
}
static int inet_pton(int family, const char *addrString, void *addrbuf)
{
if (family == AF_INET) {
struct sockaddr_in saddr;
memset(&saddr, 0, sizeof(saddr));
INT len = sizeof(saddr);
if (WSAStringToAddress((LPTSTR)addrString, AF_INET, nullptr, (LPSOCKADDR)&saddr, &len)) {
return 0;
}
*(struct in_addr *)addrbuf = saddr.sin_addr;
return 1;
} else if (family == AF_INET6) {
struct sockaddr_in6 saddr;
memset(&saddr, 0, sizeof(saddr));
INT len = sizeof(saddr);
if (WSAStringToAddress((LPTSTR)addrString, AF_INET6, nullptr, (LPSOCKADDR)&saddr, &len)) {
return 0;
}
*(struct in6_addr *)addrbuf = saddr.sin6_addr;
return 1;
}
return 0;
}
#endif
#include
#include
#include
#include
#include "logger.h"
#include "mono_time.h"
#include "util.h"
// Disable MSG_NOSIGNAL on systems not supporting it, e.g. Windows, FreeBSD
#if !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
#ifndef IPV6_ADD_MEMBERSHIP
#ifdef IPV6_JOIN_GROUP
#define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP
#endif
#endif
#if TOX_INET6_ADDRSTRLEN < INET6_ADDRSTRLEN
#error "TOX_INET6_ADDRSTRLEN should be greater or equal to INET6_ADDRSTRLEN (#INET6_ADDRSTRLEN)"
#endif
#if TOX_INET_ADDRSTRLEN < INET_ADDRSTRLEN
#error "TOX_INET_ADDRSTRLEN should be greater or equal to INET_ADDRSTRLEN (#INET_ADDRSTRLEN)"
#endif
static int make_proto(int proto);
static int make_socktype(int type);
static int make_family(Family tox_family)
{
switch (tox_family.value) {
case TOX_AF_INET:
return AF_INET;
case TOX_AF_INET6:
return AF_INET6;
case TOX_AF_UNSPEC:
return AF_UNSPEC;
default:
return tox_family.value;
}
}
static const Family *make_tox_family(int family)
{
switch (family) {
case AF_INET:
return &net_family_ipv4;
case AF_INET6:
return &net_family_ipv6;
case AF_UNSPEC:
return &net_family_unspec;
default:
return nullptr;
}
}
static void get_ip4(IP4 *result, const struct in_addr *addr)
{
result->uint32 = addr->s_addr;
}
static void get_ip6(IP6 *result, const struct in6_addr *addr)
{
assert(sizeof(result->uint8) == sizeof(addr->s6_addr));
memcpy(result->uint8, addr->s6_addr, sizeof(result->uint8));
}
static void fill_addr4(IP4 ip, struct in_addr *addr)
{
addr->s_addr = ip.uint32;
}
static void fill_addr6(IP6 ip, struct in6_addr *addr)
{
assert(sizeof(ip.uint8) == sizeof(addr->s6_addr));
memcpy(addr->s6_addr, ip.uint8, sizeof(ip.uint8));
}
#if !defined(INADDR_LOOPBACK)
#define INADDR_LOOPBACK 0x7f000001
#endif
const IP4 ip4_broadcast = { INADDR_BROADCAST };
const IP6 ip6_broadcast = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
};
IP4 get_ip4_loopback(void)
{
IP4 loopback;
loopback.uint32 = htonl(INADDR_LOOPBACK);
return loopback;
}
IP6 get_ip6_loopback(void)
{
IP6 loopback;
get_ip6(&loopback, &in6addr_loopback);
return loopback;
}
#ifndef OS_WIN32
#define INVALID_SOCKET -1
#endif
const Socket net_invalid_socket = { (int)INVALID_SOCKET };
const Family net_family_unspec = {TOX_AF_UNSPEC};
const Family net_family_ipv4 = {TOX_AF_INET};
const Family net_family_ipv6 = {TOX_AF_INET6};
const Family net_family_tcp_family = {TCP_FAMILY};
const Family net_family_tcp_onion = {TCP_ONION_FAMILY};
const Family net_family_tcp_ipv4 = {TCP_INET};
const Family net_family_tcp_ipv6 = {TCP_INET6};
const Family net_family_tox_tcp_ipv4 = {TOX_TCP_INET};
const Family net_family_tox_tcp_ipv6 = {TOX_TCP_INET6};
bool net_family_is_unspec(Family family)
{
return family.value == net_family_unspec.value;
}
bool net_family_is_ipv4(Family family)
{
return family.value == net_family_ipv4.value;
}
bool net_family_is_ipv6(Family family)
{
return family.value == net_family_ipv6.value;
}
bool net_family_is_tcp_family(Family family)
{
return family.value == net_family_tcp_family.value;
}
bool net_family_is_tcp_onion(Family family)
{
return family.value == net_family_tcp_onion.value;
}
bool net_family_is_tcp_ipv4(Family family)
{
return family.value == net_family_tcp_ipv4.value;
}
bool net_family_is_tcp_ipv6(Family family)
{
return family.value == net_family_tcp_ipv6.value;
}
bool net_family_is_tox_tcp_ipv4(Family family)
{
return family.value == net_family_tox_tcp_ipv4.value;
}
bool net_family_is_tox_tcp_ipv6(Family family)
{
return family.value == net_family_tox_tcp_ipv6.value;
}
bool sock_valid(Socket sock)
{
return sock.socket != net_invalid_socket.socket;
}
/* Close the socket.
*/
void kill_sock(Socket sock)
{
#ifdef OS_WIN32
closesocket(sock.socket);
#else
close(sock.socket);
#endif
}
bool set_socket_nonblock(Socket sock)
{
#ifdef OS_WIN32
u_long mode = 1;
return ioctlsocket(sock.socket, FIONBIO, &mode) == 0;
#else
return fcntl(sock.socket, F_SETFL, O_NONBLOCK, 1) == 0;
#endif
}
bool set_socket_nosigpipe(Socket sock)
{
#if defined(__APPLE__)
int set = 1;
return setsockopt(sock.socket, SOL_SOCKET, SO_NOSIGPIPE, (const char *)&set, sizeof(int)) == 0;
#else
return true;
#endif
}
bool set_socket_reuseaddr(Socket sock)
{
int set = 1;
return setsockopt(sock.socket, SOL_SOCKET, SO_REUSEADDR, (const char *)&set, sizeof(set)) == 0;
}
bool set_socket_dualstack(Socket sock)
{
int ipv6only = 0;
socklen_t optsize = sizeof(ipv6only);
int res = getsockopt(sock.socket, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&ipv6only, &optsize);
if ((res == 0) && (ipv6only == 0)) {
return true;
}
ipv6only = 0;
return setsockopt(sock.socket, IPPROTO_IPV6, IPV6_V6ONLY, (const char *)&ipv6only, sizeof(ipv6only)) == 0;
}
static uint32_t data_0(uint16_t buflen, const uint8_t *buffer)
{
// TODO(iphydf): Do this differently. Right now this is most likely a
// misaligned memory access in reality, and definitely undefined behaviour
// in terms of C standard.
const uint8_t *const start = buffer + 1;
return buflen > 4 ? net_ntohl(*(const uint32_t *)start) : 0;
}
static uint32_t data_1(uint16_t buflen, const uint8_t *buffer)
{
const uint8_t *const start = buffer + 5;
return buflen > 7 ? net_ntohl(*(const uint32_t *)start) : 0;
}
static void loglogdata(const Logger *log, const char *message, const uint8_t *buffer,
uint16_t buflen, IP_Port ip_port, int res)
{
char ip_str[IP_NTOA_LEN];
if (res < 0) { /* Windows doesn't necessarily know %zu */
int error = net_error();
const char *strerror = net_new_strerror(error);
LOGGER_TRACE(log, "[%2u] %s %3u%c %s:%u (%u: %s) | %04x%04x",
buffer[0], message, (buflen < 999 ? buflen : 999), 'E',
ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), error,
strerror, data_0(buflen, buffer), data_1(buflen, buffer));
net_kill_strerror(strerror);
} else if ((res > 0) && ((size_t)res <= buflen)) {
LOGGER_TRACE(log, "[%2u] %s %3u%c %s:%u (%u: %s) | %04x%04x",
buffer[0], message, (res < 999 ? res : 999), ((size_t)res < buflen ? '<' : '='),
ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), 0, "OK",
data_0(buflen, buffer), data_1(buflen, buffer));
} else { /* empty or overwrite */
LOGGER_TRACE(log, "[%2u] %s %u%c%u %s:%u (%u: %s) | %04x%04x",
buffer[0], message, res, (!res ? '!' : '>'), buflen,
ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), 0, "OK",
data_0(buflen, buffer), data_1(buflen, buffer));
}
}
typedef struct Packet_Handler {
packet_handler_cb *function;
void *object;
} Packet_Handler;
struct Networking_Core {
const Logger *log;
Packet_Handler packethandlers[256];
Family family;
uint16_t port;
/* Our UDP socket. */
Socket sock;
};
Family net_family(const Networking_Core *net)
{
return net->family;
}
uint16_t net_port(const Networking_Core *net)
{
return net->port;
}
/* Basic network functions:
* Function to send packet(data) of length length to ip_port.
*/
int sendpacket(Networking_Core *net, IP_Port ip_port, const uint8_t *data, uint16_t length)
{
if (net_family_is_unspec(net->family)) { /* Socket not initialized */
LOGGER_ERROR(net->log, "attempted to send message of length %u on uninitialised socket", (unsigned)length);
return -1;
}
/* socket TOX_AF_INET, but target IP NOT: can't send */
if (net_family_is_ipv4(net->family) && !net_family_is_ipv4(ip_port.ip.family)) {
LOGGER_ERROR(net->log, "attempted to send message with network family %d (probably IPv6) on IPv4 socket",
ip_port.ip.family.value);
return -1;
}
if (net_family_is_ipv4(ip_port.ip.family) && net_family_is_ipv6(net->family)) {
/* must convert to IPV4-in-IPV6 address */
IP6 ip6;
/* there should be a macro for this in a standards compliant
* environment, not found */
ip6.uint32[0] = 0;
ip6.uint32[1] = 0;
ip6.uint32[2] = net_htonl(0xFFFF);
ip6.uint32[3] = ip_port.ip.ip.v4.uint32;
ip_port.ip.family = net_family_ipv6;
ip_port.ip.ip.v6 = ip6;
}
struct sockaddr_storage addr;
size_t addrsize;
if (net_family_is_ipv4(ip_port.ip.family)) {
struct sockaddr_in *const addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = ip_port.port;
fill_addr4(ip_port.ip.ip.v4, &addr4->sin_addr);
} else if (net_family_is_ipv6(ip_port.ip.family)) {
struct sockaddr_in6 *const addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = ip_port.port;
fill_addr6(ip_port.ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
} else {
LOGGER_WARNING(net->log, "unknown address type: %d", ip_port.ip.family.value);
return -1;
}
const int res = sendto(net->sock.socket, (const char *)data, length, 0, (struct sockaddr *)&addr, addrsize);
loglogdata(net->log, "O=>", data, length, ip_port, res);
return res;
}
/* Function to receive data
* ip and port of sender is put into ip_port.
* Packet data is put into data.
* Packet length is put into length.
*/
static int receivepacket(const Logger *log, Socket sock, IP_Port *ip_port, uint8_t *data, uint32_t *length)
{
memset(ip_port, 0, sizeof(IP_Port));
struct sockaddr_storage addr;
#ifdef OS_WIN32
int addrlen = sizeof(addr);
#else
socklen_t addrlen = sizeof(addr);
#endif
*length = 0;
int fail_or_len = recvfrom(sock.socket, (char *) data, MAX_UDP_PACKET_SIZE, 0, (struct sockaddr *)&addr, &addrlen);
if (fail_or_len < 0) {
int error = net_error();
if (fail_or_len < 0 && error != TOX_EWOULDBLOCK) {
const char *strerror = net_new_strerror(error);
LOGGER_ERROR(log, "Unexpected error reading from socket: %u, %s", error, strerror);
net_kill_strerror(strerror);
}
return -1; /* Nothing received. */
}
*length = (uint32_t)fail_or_len;
if (addr.ss_family == AF_INET) {
struct sockaddr_in *addr_in = (struct sockaddr_in *)&addr;
const Family *const family = make_tox_family(addr_in->sin_family);
assert(family != nullptr);
if (family == nullptr) {
return -1;
}
ip_port->ip.family = *family;
get_ip4(&ip_port->ip.ip.v4, &addr_in->sin_addr);
ip_port->port = addr_in->sin_port;
} else if (addr.ss_family == AF_INET6) {
struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *)&addr;
const Family *const family = make_tox_family(addr_in6->sin6_family);
assert(family != nullptr);
if (family == nullptr) {
return -1;
}
ip_port->ip.family = *family;
get_ip6(&ip_port->ip.ip.v6, &addr_in6->sin6_addr);
ip_port->port = addr_in6->sin6_port;
if (ipv6_ipv4_in_v6(ip_port->ip.ip.v6)) {
ip_port->ip.family = net_family_ipv4;
ip_port->ip.ip.v4.uint32 = ip_port->ip.ip.v6.uint32[3];
}
} else {
return -1;
}
loglogdata(log, "=>O", data, MAX_UDP_PACKET_SIZE, *ip_port, *length);
return 0;
}
void networking_registerhandler(Networking_Core *net, uint8_t byte, packet_handler_cb *cb, void *object)
{
net->packethandlers[byte].function = cb;
net->packethandlers[byte].object = object;
}
void networking_poll(Networking_Core *net, void *userdata)
{
if (net_family_is_unspec(net->family)) {
/* Socket not initialized */
return;
}
IP_Port ip_port;
uint8_t data[MAX_UDP_PACKET_SIZE];
uint32_t length;
while (receivepacket(net->log, net->sock, &ip_port, data, &length) != -1) {
if (length < 1) {
continue;
}
if (!(net->packethandlers[data[0]].function)) {
LOGGER_WARNING(net->log, "[%02u] -- Packet has no handler", data[0]);
continue;
}
net->packethandlers[data[0]].function(net->packethandlers[data[0]].object, ip_port, data, length, userdata);
}
}
#ifndef VANILLA_NACL
/* Used for sodium_init() */
#include
#endif
//!TOKSTYLE-
// Global mutable state is not allowed in Tokstyle.
static uint8_t at_startup_ran = 0;
//!TOKSTYLE+
int networking_at_startup(void)
{
if (at_startup_ran != 0) {
return 0;
}
#ifndef VANILLA_NACL
#ifdef USE_RANDOMBYTES_STIR
randombytes_stir();
#else
if (sodium_init() == -1) {
return -1;
}
#endif /*USE_RANDOMBYTES_STIR*/
#endif/*VANILLA_NACL*/
#ifdef OS_WIN32
WSADATA wsaData;
if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR) {
return -1;
}
#endif
at_startup_ran = 1;
return 0;
}
/* TODO(irungentoo): Put this somewhere */
#if 0
static void at_shutdown(void)
{
#ifdef OS_WIN32
WSACleanup();
#endif
}
#endif
/* Initialize networking.
* Added for reverse compatibility with old new_networking calls.
*/
Networking_Core *new_networking(const Logger *log, IP ip, uint16_t port)
{
return new_networking_ex(log, ip, port, port + (TOX_PORTRANGE_TO - TOX_PORTRANGE_FROM), nullptr);
}
/* Initialize networking.
* Bind to ip and port.
* ip must be in network order EX: 127.0.0.1 = (7F000001).
* port is in host byte order (this means don't worry about it).
*
* return Networking_Core object if no problems
* return NULL if there are problems.
*
* If error is non NULL it is set to 0 if no issues, 1 if socket related error, 2 if other.
*/
Networking_Core *new_networking_ex(const Logger *log, IP ip, uint16_t port_from, uint16_t port_to, unsigned int *error)
{
/* If both from and to are 0, use default port range
* If one is 0 and the other is non-0, use the non-0 value as only port
* If from > to, swap
*/
if (port_from == 0 && port_to == 0) {
port_from = TOX_PORTRANGE_FROM;
port_to = TOX_PORTRANGE_TO;
} else if (port_from == 0 && port_to != 0) {
port_from = port_to;
} else if (port_from != 0 && port_to == 0) {
port_to = port_from;
} else if (port_from > port_to) {
uint16_t temp = port_from;
port_from = port_to;
port_to = temp;
}
if (error) {
*error = 2;
}
/* maybe check for invalid IPs like 224+.x.y.z? if there is any IP set ever */
if (!net_family_is_ipv4(ip.family) && !net_family_is_ipv6(ip.family)) {
LOGGER_ERROR(log, "invalid address family: %u\n", ip.family.value);
return nullptr;
}
if (networking_at_startup() != 0) {
return nullptr;
}
Networking_Core *temp = (Networking_Core *)calloc(1, sizeof(Networking_Core));
if (temp == nullptr) {
return nullptr;
}
temp->log = log;
temp->family = ip.family;
temp->port = 0;
/* Initialize our socket. */
/* add log message what we're creating */
temp->sock = net_socket(temp->family, TOX_SOCK_DGRAM, TOX_PROTO_UDP);
/* Check for socket error. */
if (!sock_valid(temp->sock)) {
int neterror = net_error();
const char *strerror = net_new_strerror(neterror);
LOGGER_ERROR(log, "Failed to get a socket?! %d, %s", neterror, strerror);
net_kill_strerror(strerror);
free(temp);
if (error) {
*error = 1;
}
return nullptr;
}
/* Functions to increase the size of the send and receive UDP buffers.
*/
int n = 1024 * 1024 * 2;
setsockopt(temp->sock.socket, SOL_SOCKET, SO_RCVBUF, (const char *)&n, sizeof(n));
setsockopt(temp->sock.socket, SOL_SOCKET, SO_SNDBUF, (const char *)&n, sizeof(n));
/* Enable broadcast on socket */
int broadcast = 1;
setsockopt(temp->sock.socket, SOL_SOCKET, SO_BROADCAST, (const char *)&broadcast, sizeof(broadcast));
/* iOS UDP sockets are weird and apparently can SIGPIPE */
if (!set_socket_nosigpipe(temp->sock)) {
kill_networking(temp);
if (error) {
*error = 1;
}
return nullptr;
}
/* Set socket nonblocking. */
if (!set_socket_nonblock(temp->sock)) {
kill_networking(temp);
if (error) {
*error = 1;
}
return nullptr;
}
/* Bind our socket to port PORT and the given IP address (usually 0.0.0.0 or ::) */
uint16_t *portptr = nullptr;
struct sockaddr_storage addr;
size_t addrsize;
memset(&addr, 0, sizeof(struct sockaddr_storage));
if (net_family_is_ipv4(temp->family)) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = 0;
fill_addr4(ip.ip.v4, &addr4->sin_addr);
portptr = &addr4->sin_port;
} else if (net_family_is_ipv6(temp->family)) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = 0;
fill_addr6(ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
portptr = &addr6->sin6_port;
} else {
free(temp);
return nullptr;
}
if (net_family_is_ipv6(ip.family)) {
const int is_dualstack = set_socket_dualstack(temp->sock);
LOGGER_DEBUG(log, "Dual-stack socket: %s",
is_dualstack ? "enabled" : "Failed to enable, won't be able to receive from/send to IPv4 addresses");
/* multicast local nodes */
struct ipv6_mreq mreq;
memset(&mreq, 0, sizeof(mreq));
mreq.ipv6mr_multiaddr.s6_addr[ 0] = 0xFF;
mreq.ipv6mr_multiaddr.s6_addr[ 1] = 0x02;
mreq.ipv6mr_multiaddr.s6_addr[15] = 0x01;
mreq.ipv6mr_interface = 0;
const int res = setsockopt(temp->sock.socket, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, (const char *)&mreq, sizeof(mreq));
int neterror = net_error();
const char *strerror = net_new_strerror(neterror);
LOGGER_DEBUG(log, res < 0 ? "Failed to activate local multicast membership. (%d, %s)" :
"Local multicast group FF02::1 joined successfully. (%d, %s)", neterror, strerror);
net_kill_strerror(strerror);
}
/* a hanging program or a different user might block the standard port;
* as long as it isn't a parameter coming from the commandline,
* try a few ports after it, to see if we can find a "free" one
*
* if we go on without binding, the first sendto() automatically binds to
* a free port chosen by the system (i.e. anything from 1024 to 65535)
*
* returning NULL after bind fails has both advantages and disadvantages:
* advantage:
* we can rely on getting the port in the range 33445..33450, which
* enables us to tell joe user to open their firewall to a small range
*
* disadvantage:
* some clients might not test return of tox_new(), blindly assuming that
* it worked ok (which it did previously without a successful bind)
*/
uint16_t port_to_try = port_from;
*portptr = net_htons(port_to_try);
int tries;
for (tries = port_from; tries <= port_to; ++tries) {
int res = bind(temp->sock.socket, (struct sockaddr *)&addr, addrsize);
if (!res) {
temp->port = *portptr;
char ip_str[IP_NTOA_LEN];
LOGGER_DEBUG(log, "Bound successfully to %s:%u", ip_ntoa(&ip, ip_str, sizeof(ip_str)),
net_ntohs(temp->port));
/* errno isn't reset on success, only set on failure, the failed
* binds with parallel clients yield a -EPERM to the outside if
* errno isn't cleared here */
if (tries > 0) {
errno = 0;
}
if (error) {
*error = 0;
}
return temp;
}
++port_to_try;
if (port_to_try > port_to) {
port_to_try = port_from;
}
*portptr = net_htons(port_to_try);
}
char ip_str[IP_NTOA_LEN];
int neterror = net_error();
const char *strerror = net_new_strerror(neterror);
LOGGER_ERROR(log, "Failed to bind socket: %d, %s IP: %s port_from: %u port_to: %u", neterror, strerror,
ip_ntoa(&ip, ip_str, sizeof(ip_str)), port_from, port_to);
net_kill_strerror(strerror);
kill_networking(temp);
if (error) {
*error = 1;
}
return nullptr;
}
Networking_Core *new_networking_no_udp(const Logger *log)
{
/* this is the easiest way to completely disable UDP without changing too much code. */
Networking_Core *net = (Networking_Core *)calloc(1, sizeof(Networking_Core));
if (net == nullptr) {
return nullptr;
}
net->log = log;
return net;
}
/* Function to cleanup networking stuff. */
void kill_networking(Networking_Core *net)
{
if (!net) {
return;
}
if (!net_family_is_unspec(net->family)) {
/* Socket is initialized, so we close it. */
kill_sock(net->sock);
}
free(net);
}
bool ip_equal(const IP *a, const IP *b)
{
if (!a || !b) {
return false;
}
/* same family */
if (a->family.value == b->family.value) {
if (net_family_is_ipv4(a->family) || net_family_is_tcp_ipv4(a->family)) {
struct in_addr addr_a;
struct in_addr addr_b;
fill_addr4(a->ip.v4, &addr_a);
fill_addr4(b->ip.v4, &addr_b);
return addr_a.s_addr == addr_b.s_addr;
}
if (net_family_is_ipv6(a->family) || net_family_is_tcp_ipv6(a->family)) {
return a->ip.v6.uint64[0] == b->ip.v6.uint64[0] &&
a->ip.v6.uint64[1] == b->ip.v6.uint64[1];
}
return false;
}
/* different family: check on the IPv6 one if it is the IPv4 one embedded */
if (net_family_is_ipv4(a->family) && net_family_is_ipv6(b->family)) {
if (ipv6_ipv4_in_v6(b->ip.v6)) {
struct in_addr addr_a;
fill_addr4(a->ip.v4, &addr_a);
return addr_a.s_addr == b->ip.v6.uint32[3];
}
} else if (net_family_is_ipv6(a->family) && net_family_is_ipv4(b->family)) {
if (ipv6_ipv4_in_v6(a->ip.v6)) {
struct in_addr addr_b;
fill_addr4(b->ip.v4, &addr_b);
return a->ip.v6.uint32[3] == addr_b.s_addr;
}
}
return false;
}
bool ipport_equal(const IP_Port *a, const IP_Port *b)
{
if (!a || !b) {
return false;
}
if (!a->port || (a->port != b->port)) {
return false;
}
return ip_equal(&a->ip, &b->ip);
}
/* nulls out ip */
void ip_reset(IP *ip)
{
if (!ip) {
return;
}
memset(ip, 0, sizeof(IP));
}
/* nulls out ip, sets family according to flag */
void ip_init(IP *ip, bool ipv6enabled)
{
if (!ip) {
return;
}
memset(ip, 0, sizeof(IP));
ip->family = ipv6enabled ? net_family_ipv6 : net_family_ipv4;
}
/* checks if ip is valid */
bool ip_isset(const IP *ip)
{
if (!ip) {
return false;
}
return !net_family_is_unspec(ip->family);
}
/* checks if ip is valid */
bool ipport_isset(const IP_Port *ipport)
{
if (!ipport) {
return false;
}
if (!ipport->port) {
return false;
}
return ip_isset(&ipport->ip);
}
/* copies an ip structure (careful about direction!) */
void ip_copy(IP *target, const IP *source)
{
if (!source || !target) {
return;
}
memcpy(target, source, sizeof(IP));
}
/* copies an ip_port structure (careful about direction!) */
void ipport_copy(IP_Port *target, const IP_Port *source)
{
if (!source || !target) {
return;
}
memcpy(target, source, sizeof(IP_Port));
}
/* ip_ntoa
* converts ip into a string
* ip_str must be of length at least IP_NTOA_LEN
*
* IPv6 addresses are enclosed into square brackets, i.e. "[IPv6]"
* writes error message into the buffer on error
*
* returns ip_str
*/
const char *ip_ntoa(const IP *ip, char *ip_str, size_t length)
{
if (length < IP_NTOA_LEN) {
snprintf(ip_str, length, "Bad buf length");
return ip_str;
}
if (ip) {
const int family = make_family(ip->family);
if (net_family_is_ipv4(ip->family)) {
/* returns standard quad-dotted notation */
struct in_addr addr;
fill_addr4(ip->ip.v4, &addr);
ip_str[0] = 0;
inet_ntop(family, &addr, ip_str, length);
} else if (net_family_is_ipv6(ip->family)) {
/* returns hex-groups enclosed into square brackets */
struct in6_addr addr;
fill_addr6(ip->ip.v6, &addr);
ip_str[0] = '[';
inet_ntop(family, &addr, &ip_str[1], length - 3);
size_t len = strlen(ip_str);
ip_str[len] = ']';
ip_str[len + 1] = 0;
} else {
snprintf(ip_str, length, "(IP invalid, family %u)", ip->family.value);
}
} else {
snprintf(ip_str, length, "(IP invalid: NULL)");
}
/* brute force protection against lacking termination */
ip_str[length - 1] = 0;
return ip_str;
}
bool ip_parse_addr(const IP *ip, char *address, size_t length)
{
if (!address || !ip) {
return false;
}
if (net_family_is_ipv4(ip->family)) {
const struct in_addr *addr = (const struct in_addr *)&ip->ip.v4;
return inet_ntop(make_family(ip->family), addr, address, length) != nullptr;
}
if (net_family_is_ipv6(ip->family)) {
const struct in6_addr *addr = (const struct in6_addr *)&ip->ip.v6;
return inet_ntop(make_family(ip->family), addr, address, length) != nullptr;
}
return false;
}
bool addr_parse_ip(const char *address, IP *to)
{
if (!address || !to) {
return false;
}
struct in_addr addr4;
if (inet_pton(AF_INET, address, &addr4) == 1) {
to->family = net_family_ipv4;
get_ip4(&to->ip.v4, &addr4);
return true;
}
struct in6_addr addr6;
if (inet_pton(AF_INET6, address, &addr6) == 1) {
to->family = net_family_ipv6;
get_ip6(&to->ip.v6, &addr6);
return true;
}
return false;
}
int addr_resolve(const char *address, IP *to, IP *extra)
{
if (!address || !to) {
return 0;
}
Family tox_family = to->family;
int family = make_family(tox_family);
struct addrinfo *server = nullptr;
struct addrinfo *walker = nullptr;
struct addrinfo hints;
int rc;
int result = 0;
int done = 0;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_DGRAM; // type of socket Tox uses.
if (networking_at_startup() != 0) {
return 0;
}
rc = getaddrinfo(address, nullptr, &hints, &server);
// Lookup failed.
if (rc != 0) {
return 0;
}
IP ip4;
ip_init(&ip4, 0); // ipv6enabled = 0
IP ip6;
ip_init(&ip6, 1); // ipv6enabled = 1
for (walker = server; (walker != nullptr) && !done; walker = walker->ai_next) {
switch (walker->ai_family) {
case AF_INET:
if (walker->ai_family == family) { /* AF_INET requested, done */
struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr;
get_ip4(&to->ip.v4, &addr->sin_addr);
result = TOX_ADDR_RESOLVE_INET;
done = 1;
} else if (!(result & TOX_ADDR_RESOLVE_INET)) { /* AF_UNSPEC requested, store away */
struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr;
get_ip4(&ip4.ip.v4, &addr->sin_addr);
result |= TOX_ADDR_RESOLVE_INET;
}
break; /* switch */
case AF_INET6:
if (walker->ai_family == family) { /* AF_INET6 requested, done */
if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr;
get_ip6(&to->ip.v6, &addr->sin6_addr);
result = TOX_ADDR_RESOLVE_INET6;
done = 1;
}
} else if (!(result & TOX_ADDR_RESOLVE_INET6)) { /* AF_UNSPEC requested, store away */
if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr;
get_ip6(&ip6.ip.v6, &addr->sin6_addr);
result |= TOX_ADDR_RESOLVE_INET6;
}
}
break; /* switch */
}
}
if (family == AF_UNSPEC) {
if (result & TOX_ADDR_RESOLVE_INET6) {
ip_copy(to, &ip6);
if ((result & TOX_ADDR_RESOLVE_INET) && (extra != nullptr)) {
ip_copy(extra, &ip4);
}
} else if (result & TOX_ADDR_RESOLVE_INET) {
ip_copy(to, &ip4);
} else {
result = 0;
}
}
freeaddrinfo(server);
return result;
}
bool addr_resolve_or_parse_ip(const char *address, IP *to, IP *extra)
{
if (!addr_resolve(address, to, extra)) {
if (!addr_parse_ip(address, to)) {
return false;
}
}
return true;
}
int net_connect(Socket sock, IP_Port ip_port)
{
struct sockaddr_storage addr = {0};
size_t addrsize;
if (net_family_is_ipv4(ip_port.ip.family)) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
fill_addr4(ip_port.ip.ip.v4, &addr4->sin_addr);
addr4->sin_port = ip_port.port;
} else if (net_family_is_ipv6(ip_port.ip.family)) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
fill_addr6(ip_port.ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_port = ip_port.port;
} else {
return 0;
}
return connect(sock.socket, (struct sockaddr *)&addr, addrsize);
}
int32_t net_getipport(const char *node, IP_Port **res, int tox_type)
{
struct addrinfo *infos;
int ret = getaddrinfo(node, nullptr, nullptr, &infos);
*res = nullptr;
if (ret != 0) {
return -1;
}
// Used to avoid malloc parameter overflow
const size_t max_count = min_u64(SIZE_MAX, INT32_MAX) / sizeof(IP_Port);
int type = make_socktype(tox_type);
struct addrinfo *cur;
size_t count = 0;
for (cur = infos; count < max_count && cur != nullptr; cur = cur->ai_next) {
if (cur->ai_socktype && type > 0 && cur->ai_socktype != type) {
continue;
}
if (cur->ai_family != AF_INET && cur->ai_family != AF_INET6) {
continue;
}
++count;
}
assert(count <= max_count);
if (count == 0) {
freeaddrinfo(infos);
return 0;
}
*res = (IP_Port *)malloc(sizeof(IP_Port) * count);
if (*res == nullptr) {
freeaddrinfo(infos);
return -1;
}
IP_Port *ip_port = *res;
for (cur = infos; cur != nullptr; cur = cur->ai_next) {
if (cur->ai_socktype && type > 0 && cur->ai_socktype != type) {
continue;
}
if (cur->ai_family == AF_INET) {
struct sockaddr_in *addr = (struct sockaddr_in *)cur->ai_addr;
memcpy(&ip_port->ip.ip.v4, &addr->sin_addr, sizeof(IP4));
} else if (cur->ai_family == AF_INET6) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)cur->ai_addr;
memcpy(&ip_port->ip.ip.v6, &addr->sin6_addr, sizeof(IP6));
} else {
continue;
}
const Family *const family = make_tox_family(cur->ai_family);
assert(family != nullptr);
if (family == nullptr) {
freeaddrinfo(infos);
return -1;
}
ip_port->ip.family = *family;
++ip_port;
}
freeaddrinfo(infos);
return count;
}
void net_freeipport(IP_Port *ip_ports)
{
free(ip_ports);
}
bool bind_to_port(Socket sock, Family family, uint16_t port)
{
struct sockaddr_storage addr = {0};
size_t addrsize;
if (net_family_is_ipv4(family)) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = net_htons(port);
} else if (net_family_is_ipv6(family)) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = net_htons(port);
} else {
return false;
}
return bind(sock.socket, (struct sockaddr *)&addr, addrsize) == 0;
}
static int make_socktype(int type)
{
switch (type) {
case TOX_SOCK_STREAM:
return SOCK_STREAM;
case TOX_SOCK_DGRAM:
return SOCK_DGRAM;
default:
return type;
}
}
static int make_proto(int proto)
{
switch (proto) {
case TOX_PROTO_TCP:
return IPPROTO_TCP;
case TOX_PROTO_UDP:
return IPPROTO_UDP;
default:
return proto;
}
}
Socket net_socket(Family domain, int type, int protocol)
{
const int platform_domain = make_family(domain);
const int platform_type = make_socktype(type);
const int platform_prot = make_proto(protocol);
const Socket sock = {(int)socket(platform_domain, platform_type, platform_prot)};
return sock;
}
int net_send(Socket sock, const void *buf, size_t len)
{
return send(sock.socket, (const char *)buf, len, MSG_NOSIGNAL);
}
int net_recv(Socket sock, void *buf, size_t len)
{
return recv(sock.socket, (char *)buf, len, MSG_NOSIGNAL);
}
int net_listen(Socket sock, int backlog)
{
return listen(sock.socket, backlog);
}
Socket net_accept(Socket sock)
{
const Socket newsock = {accept(sock.socket, nullptr, nullptr)};
return newsock;
}
size_t net_socket_data_recv_buffer(Socket sock)
{
#ifdef OS_WIN32
unsigned long count = 0;
ioctlsocket(sock.socket, FIONREAD, &count);
#else
int count = 0;
ioctl(sock.socket, FIONREAD, &count);
#endif
return count;
}
uint32_t net_htonl(uint32_t hostlong)
{
return htonl(hostlong);
}
uint16_t net_htons(uint16_t hostshort)
{
return htons(hostshort);
}
uint32_t net_ntohl(uint32_t hostlong)
{
return ntohl(hostlong);
}
uint16_t net_ntohs(uint16_t hostshort)
{
return ntohs(hostshort);
}
size_t net_pack_u16(uint8_t *bytes, uint16_t v)
{
bytes[0] = (v >> 8) & 0xff;
bytes[1] = v & 0xff;
return sizeof(v);
}
size_t net_pack_u32(uint8_t *bytes, uint32_t v)
{
uint8_t *p = bytes;
p += net_pack_u16(p, (v >> 16) & 0xffff);
p += net_pack_u16(p, v & 0xffff);
return p - bytes;
}
size_t net_pack_u64(uint8_t *bytes, uint64_t v)
{
uint8_t *p = bytes;
p += net_pack_u32(p, (v >> 32) & 0xffffffff);
p += net_pack_u32(p, v & 0xffffffff);
return p - bytes;
}
size_t net_unpack_u16(const uint8_t *bytes, uint16_t *v)
{
uint8_t hi = bytes[0];
uint8_t lo = bytes[1];
*v = ((uint16_t)hi << 8) | lo;
return sizeof(*v);
}
size_t net_unpack_u32(const uint8_t *bytes, uint32_t *v)
{
const uint8_t *p = bytes;
uint16_t lo, hi;
p += net_unpack_u16(p, &hi);
p += net_unpack_u16(p, &lo);
*v = ((uint32_t)hi << 16) | lo;
return p - bytes;
}
size_t net_unpack_u64(const uint8_t *bytes, uint64_t *v)
{
const uint8_t *p = bytes;
uint32_t lo, hi;
p += net_unpack_u32(p, &hi);
p += net_unpack_u32(p, &lo);
*v = ((uint64_t)hi << 32) | lo;
return p - bytes;
}
bool ipv6_ipv4_in_v6(IP6 a)
{
return a.uint64[0] == 0 && a.uint32[2] == net_htonl(0xffff);
}
int net_error(void)
{
#if defined(_WIN32) || defined(__WIN32__) || defined(WIN32)
return WSAGetLastError();
#else
return errno;
#endif
}
const char *net_new_strerror(int error)
{
#if defined(_WIN32) || defined(__WIN32__) || defined(WIN32)
char *str = nullptr;
// Windows API is weird. The 5th function arg is of char* type, but we
// have to pass char** so that it could assign new memory block to our
// pointer, so we have to cast our char** to char* for the compilation
// not to fail (otherwise it would fail to find a variant of this function
// accepting char** as the 5th arg) and Windows inside casts it back
// to char** to do the assignment. So no, this cast you see here, although
// it looks weird, is not a mistake.
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr,
error, 0, (char *)&str, 0, nullptr);
return str;
#else
return strerror(error);
#endif
}
void net_kill_strerror(const char *strerror)
{
#if defined(_WIN32) || defined(__WIN32__) || defined(WIN32)
LocalFree((char *)strerror);
#endif
}