/* network.c * * Functions for the core networking. * * Copyright (C) 2013 Tox project All Rights Reserved. * * This file is part of Tox. * * Tox is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Tox is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Tox. If not, see . * */ #if (_WIN32_WINNT >= _WIN32_WINNT_WINXP) #define _WIN32_WINNT 0x501 #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "logger.h" #if !defined(_WIN32) && !defined(__WIN32__) && !defined (WIN32) #include #endif #ifdef __APPLE__ #include #include #endif #include "network.h" #include "util.h" #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) static const char *inet_ntop(sa_family_t family, void *addr, char *buf, size_t bufsize) { if (family == AF_INET) { struct sockaddr_in saddr; memset(&saddr, 0, sizeof(saddr)); saddr.sin_family = AF_INET; saddr.sin_addr = *(struct in_addr *)addr; DWORD len = bufsize; if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), NULL, buf, &len)) return NULL; return buf; } else if (family == AF_INET6) { struct sockaddr_in6 saddr; memset(&saddr, 0, sizeof(saddr)); saddr.sin6_family = AF_INET6; saddr.sin6_addr = *(struct in6_addr *)addr; DWORD len = bufsize; if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), NULL, buf, &len)) return NULL; return buf; } return NULL; } static int inet_pton(sa_family_t family, const char *addrString, void *addrbuf) { if (family == AF_INET) { struct sockaddr_in saddr; memset(&saddr, 0, sizeof(saddr)); INT len = sizeof(saddr); if (WSAStringToAddress((LPTSTR)addrString, AF_INET, NULL, (LPSOCKADDR)&saddr, &len)) return 0; *(struct in_addr *)addrbuf = saddr.sin_addr; return 1; } else if (family == AF_INET6) { struct sockaddr_in6 saddr; memset(&saddr, 0, sizeof(saddr)); INT len = sizeof(saddr); if (WSAStringToAddress((LPTSTR)addrString, AF_INET6, NULL, (LPSOCKADDR)&saddr, &len)) return 0; *(struct in6_addr *)addrbuf = saddr.sin6_addr; return 1; } return 0; } #endif /* Check if socket is valid. * * return 1 if valid * return 0 if not valid */ int sock_valid(sock_t sock) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) if (sock == INVALID_SOCKET) { #else if (sock < 0) { #endif return 0; } return 1; } /* Close the socket. */ void kill_sock(sock_t sock) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) closesocket(sock); #else close(sock); #endif } /* Set socket as nonblocking * * return 1 on success * return 0 on failure */ int set_socket_nonblock(sock_t sock) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) u_long mode = 1; return (ioctlsocket(sock, FIONBIO, &mode) == 0); #else return (fcntl(sock, F_SETFL, O_NONBLOCK, 1) == 0); #endif } /* Set socket to not emit SIGPIPE * * return 1 on success * return 0 on failure */ int set_socket_nosigpipe(sock_t sock) { #if defined(__MACH__) int set = 1; return (setsockopt(sock, SOL_SOCKET, SO_NOSIGPIPE, (void *)&set, sizeof(int)) == 0); #else return 1; #endif } /* Set socket to dual (IPv4 + IPv6 socket) * * return 1 on success * return 0 on failure */ int set_socket_dualstack(sock_t sock) { int ipv6only = 0; socklen_t optsize = sizeof(ipv6only); int res = getsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (void *)&ipv6only, &optsize); if ((res == 0) && (ipv6only == 0)) return 1; ipv6only = 0; return (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (void *)&ipv6only, sizeof(ipv6only)) == 0); } /* return current UNIX time in microseconds (us). */ static uint64_t current_time_actual(void) { uint64_t time; #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) /* This probably works fine */ FILETIME ft; GetSystemTimeAsFileTime(&ft); time = ft.dwHighDateTime; time <<= 32; time |= ft.dwLowDateTime; time -= 116444736000000000ULL; return time / 10; #else struct timeval a; gettimeofday(&a, NULL); time = 1000000ULL * a.tv_sec + a.tv_usec; return time; #endif } #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) static uint64_t last_monotime; static uint64_t add_monotime; #endif /* return current monotonic time in milliseconds (ms). */ uint64_t current_time_monotonic(void) { uint64_t time; #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) time = (uint64_t)GetTickCount() + add_monotime; if (time < last_monotime) { /* Prevent time from ever decreasing because of 32 bit wrap. */ uint32_t add = ~0; add_monotime += add; time += add; } last_monotime = time; #else struct timespec monotime; #if defined(__linux__) && defined(CLOCK_MONOTONIC_RAW) clock_gettime(CLOCK_MONOTONIC_RAW, &monotime); #elif defined(__APPLE__) clock_serv_t muhclock; mach_timespec_t machtime; host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &muhclock); clock_get_time(muhclock, &machtime); mach_port_deallocate(mach_task_self(), muhclock); monotime.tv_sec = machtime.tv_sec; monotime.tv_nsec = machtime.tv_nsec; #else clock_gettime(CLOCK_MONOTONIC, &monotime); #endif time = 1000ULL * monotime.tv_sec + (monotime.tv_nsec / 1000000ULL); #endif return time; } /* In case no logging */ #ifndef LOGGING #define loglogdata(__message__, __buffer__, __buflen__, __ip_port__, __res__) #else #define data_0(__buflen__, __buffer__) __buflen__ > 4 ? ntohl(*(uint32_t *)&__buffer__[1]) : 0 #define data_1(__buflen__, __buffer__) __buflen__ > 7 ? ntohl(*(uint32_t *)&__buffer__[5]) : 0 #define loglogdata(__message__, __buffer__, __buflen__, __ip_port__, __res__) \ (__ip_port__) .ip; \ if (__res__ < 0) /* Windows doesn't necessarily know %zu */ \ LOGGER_INFO("[%2u] %s %3hu%c %s:%hu (%u: %s) | %04x%04x", \ __buffer__[0], __message__, (__buflen__ < 999 ? (uint16_t)__buflen__ : 999), 'E', \ ip_ntoa(&((__ip_port__).ip)), ntohs((__ip_port__).port), errno, strerror(errno), data_0(__buflen__, __buffer__), data_1(__buflen__, __buffer__)); \ else if ((__res__ > 0) && ((size_t)__res__ <= __buflen__)) \ LOGGER_INFO("[%2u] %s %3zu%c %s:%hu (%u: %s) | %04x%04x", \ __buffer__[0], __message__, (__res__ < 999 ? (size_t)__res__ : 999), ((size_t)__res__ < __buflen__ ? '<' : '='), \ ip_ntoa(&((__ip_port__).ip)), ntohs((__ip_port__).port), 0, "OK", data_0(__buflen__, __buffer__), data_1(__buflen__, __buffer__)); \ else /* empty or overwrite */ \ LOGGER_INFO("[%2u] %s %zu%c%zu %s:%hu (%u: %s) | %04x%04x", \ __buffer__[0], __message__, (size_t)__res__, (!__res__ ? '!' : '>'), __buflen__, \ ip_ntoa(&((__ip_port__).ip)), ntohs((__ip_port__).port), 0, "OK", data_0(__buflen__, __buffer__), data_1(__buflen__, __buffer__)); #endif /* LOGGING */ /* Basic network functions: * Function to send packet(data) of length length to ip_port. */ int sendpacket(Networking_Core *net, IP_Port ip_port, const uint8_t *data, uint32_t length) { if (net->family == 0) /* Socket not initialized */ return -1; /* socket AF_INET, but target IP NOT: can't send */ if ((net->family == AF_INET) && (ip_port.ip.family != AF_INET)) return -1; struct sockaddr_storage addr; size_t addrsize = 0; if (ip_port.ip.family == AF_INET) { if (net->family == AF_INET6) { /* must convert to IPV4-in-IPV6 address */ struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = ip_port.port; /* there should be a macro for this in a standards compliant * environment, not found */ IP6 ip6; ip6.uint32[0] = 0; ip6.uint32[1] = 0; ip6.uint32[2] = htonl(0xFFFF); ip6.uint32[3] = ip_port.ip.ip4.uint32; addr6->sin6_addr = ip6.in6_addr; addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; } else { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr; addrsize = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_addr = ip_port.ip.ip4.in_addr; addr4->sin_port = ip_port.port; } } else if (ip_port.ip.family == AF_INET6) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = ip_port.port; addr6->sin6_addr = ip_port.ip.ip6.in6_addr; addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; } else { /* unknown address type*/ return -1; } int res = sendto(net->sock, (char *) data, length, 0, (struct sockaddr *)&addr, addrsize); loglogdata("O=>", data, length, ip_port, res); return res; } /* Function to receive data * ip and port of sender is put into ip_port. * Packet data is put into data. * Packet length is put into length. */ static int receivepacket(sock_t sock, IP_Port *ip_port, uint8_t *data, uint32_t *length) { memset(ip_port, 0, sizeof(IP_Port)); struct sockaddr_storage addr; #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) int addrlen = sizeof(addr); #else socklen_t addrlen = sizeof(addr); #endif *length = 0; int fail_or_len = recvfrom(sock, (char *) data, MAX_UDP_PACKET_SIZE, 0, (struct sockaddr *)&addr, &addrlen); if (fail_or_len < 0) { LOGGER_SCOPE( if ((fail_or_len < 0) && (errno != EWOULDBLOCK)) LOGGER_ERROR("Unexpected error reading from socket: %u, %s\n", errno, strerror(errno)); ); return -1; /* Nothing received. */ } *length = (uint32_t)fail_or_len; if (addr.ss_family == AF_INET) { struct sockaddr_in *addr_in = (struct sockaddr_in *)&addr; ip_port->ip.family = addr_in->sin_family; ip_port->ip.ip4.in_addr = addr_in->sin_addr; ip_port->port = addr_in->sin_port; } else if (addr.ss_family == AF_INET6) { struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *)&addr; ip_port->ip.family = addr_in6->sin6_family; ip_port->ip.ip6.in6_addr = addr_in6->sin6_addr; ip_port->port = addr_in6->sin6_port; if (IPV6_IPV4_IN_V6(ip_port->ip.ip6)) { ip_port->ip.family = AF_INET; ip_port->ip.ip4.uint32 = ip_port->ip.ip6.uint32[3]; } } else return -1; loglogdata("=>O", data, MAX_UDP_PACKET_SIZE, *ip_port, *length); return 0; } void networking_registerhandler(Networking_Core *net, uint8_t byte, packet_handler_callback cb, void *object) { net->packethandlers[byte].function = cb; net->packethandlers[byte].object = object; } void networking_poll(Networking_Core *net) { if (net->family == 0) /* Socket not initialized */ return; unix_time_update(); IP_Port ip_port; uint8_t data[MAX_UDP_PACKET_SIZE]; uint32_t length; while (receivepacket(net->sock, &ip_port, data, &length) != -1) { if (length < 1) continue; if (!(net->packethandlers[data[0]].function)) { LOGGER_WARNING("[%02u] -- Packet has no handler", data[0]); continue; } net->packethandlers[data[0]].function(net->packethandlers[data[0]].object, ip_port, data, length); } } #ifndef VANILLA_NACL /* Used for sodium_init() */ #include #endif uint8_t at_startup_ran = 0; int networking_at_startup(void) { if (at_startup_ran != 0) return 0; #ifndef VANILLA_NACL #ifdef USE_RANDOMBYTES_STIR randombytes_stir(); #else sodium_init(); #endif /*USE_RANDOMBYTES_STIR*/ #endif/*VANILLA_NACL*/ #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) WSADATA wsaData; if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR) return -1; #endif srand((uint32_t)current_time_actual()); at_startup_ran = 1; return 0; } /* TODO: Put this somewhere static void at_shutdown(void) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) WSACleanup(); #endif } */ /* Initialize networking. * Bind to ip and port. * ip must be in network order EX: 127.0.0.1 = (7F000001). * port is in host byte order (this means don't worry about it). * * return Networking_Core object if no problems * return NULL if there are problems. */ Networking_Core *new_networking(IP ip, uint16_t port) { /* maybe check for invalid IPs like 224+.x.y.z? if there is any IP set ever */ if (ip.family != AF_INET && ip.family != AF_INET6) { #ifdef DEBUG fprintf(stderr, "Invalid address family: %u\n", ip.family); #endif return NULL; } if (networking_at_startup() != 0) return NULL; Networking_Core *temp = calloc(1, sizeof(Networking_Core)); if (temp == NULL) return NULL; temp->family = ip.family; temp->port = 0; /* Initialize our socket. */ /* add log message what we're creating */ temp->sock = socket(temp->family, SOCK_DGRAM, IPPROTO_UDP); /* Check for socket error. */ if (!sock_valid(temp->sock)) { #ifdef DEBUG fprintf(stderr, "Failed to get a socket?! %u, %s\n", errno, strerror(errno)); #endif free(temp); return NULL; } /* Functions to increase the size of the send and receive UDP buffers. */ int n = 1024 * 1024 * 2; setsockopt(temp->sock, SOL_SOCKET, SO_RCVBUF, (char *)&n, sizeof(n)); setsockopt(temp->sock, SOL_SOCKET, SO_SNDBUF, (char *)&n, sizeof(n)); /* Enable broadcast on socket */ int broadcast = 1; setsockopt(temp->sock, SOL_SOCKET, SO_BROADCAST, (char *)&broadcast, sizeof(broadcast)); /* iOS UDP sockets are weird and apparently can SIGPIPE */ if (!set_socket_nosigpipe(temp->sock)) { kill_networking(temp); return NULL; } /* Set socket nonblocking. */ if (!set_socket_nonblock(temp->sock)) { kill_networking(temp); return NULL; } /* Bind our socket to port PORT and the given IP address (usually 0.0.0.0 or ::) */ uint16_t *portptr = NULL; struct sockaddr_storage addr; size_t addrsize; if (temp->family == AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr; addrsize = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_port = 0; addr4->sin_addr = ip.ip4.in_addr; portptr = &addr4->sin_port; } else if (temp->family == AF_INET6) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = 0; addr6->sin6_addr = ip.ip6.in6_addr; addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; portptr = &addr6->sin6_port; } else { free(temp); return NULL; } if (ip.family == AF_INET6) { #ifdef LOGGING int is_dualstack = #endif /* LOGGING */ set_socket_dualstack(temp->sock); LOGGER_DEBUG( "Dual-stack socket: %s", is_dualstack ? "enabled" : "Failed to enable, won't be able to receive from/send to IPv4 addresses" ); /* multicast local nodes */ struct ipv6_mreq mreq; memset(&mreq, 0, sizeof(mreq)); mreq.ipv6mr_multiaddr.s6_addr[ 0] = 0xFF; mreq.ipv6mr_multiaddr.s6_addr[ 1] = 0x02; mreq.ipv6mr_multiaddr.s6_addr[15] = 0x01; mreq.ipv6mr_interface = 0; #ifdef LOGGING int res = #endif /* LOGGING */ setsockopt(temp->sock, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, (char *)&mreq, sizeof(mreq)); LOGGER_DEBUG(res < 0 ? "Failed to activate local multicast membership. (%u, %s)" : "Local multicast group FF02::1 joined successfully", errno, strerror(errno) ); } /* a hanging program or a different user might block the standard port; * as long as it isn't a parameter coming from the commandline, * try a few ports after it, to see if we can find a "free" one * * if we go on without binding, the first sendto() automatically binds to * a free port chosen by the system (i.e. anything from 1024 to 65535) * * returning NULL after bind fails has both advantages and disadvantages: * advantage: * we can rely on getting the port in the range 33445..33450, which * enables us to tell joe user to open their firewall to a small range * * disadvantage: * some clients might not test return of tox_new(), blindly assuming that * it worked ok (which it did previously without a successful bind) */ uint16_t port_to_try = port; *portptr = htons(port_to_try); int tries; for (tries = TOX_PORTRANGE_FROM; tries <= TOX_PORTRANGE_TO; tries++) { int res = bind(temp->sock, (struct sockaddr *)&addr, addrsize); if (!res) { temp->port = *portptr; LOGGER_DEBUG("Bound successfully to %s:%u", ip_ntoa(&ip), ntohs(temp->port)); /* errno isn't reset on success, only set on failure, the failed * binds with parallel clients yield a -EPERM to the outside if * errno isn't cleared here */ if (tries > 0) errno = 0; return temp; } port_to_try++; if (port_to_try > TOX_PORTRANGE_TO) port_to_try = TOX_PORTRANGE_FROM; *portptr = htons(port_to_try); } #ifdef DEBUG fprintf(stderr, "Failed to bind socket: %u, %s (IP/Port: %s:%u\n", errno, strerror(errno), ip_ntoa(&ip), port); #endif kill_networking(temp); return NULL; } /* Function to cleanup networking stuff. */ void kill_networking(Networking_Core *net) { if (net->family != 0) /* Socket not initialized */ kill_sock(net->sock); free(net); return; } /* ip_equal * compares two IPAny structures * unset means unequal * * returns 0 when not equal or when uninitialized */ int ip_equal(const IP *a, const IP *b) { if (!a || !b) return 0; /* same family */ if (a->family == b->family) { if (a->family == AF_INET) return (a->ip4.in_addr.s_addr == b->ip4.in_addr.s_addr); else if (a->family == AF_INET6) return a->ip6.uint64[0] == b->ip6.uint64[0] && a->ip6.uint64[1] == b->ip6.uint64[1]; else return 0; } /* different family: check on the IPv6 one if it is the IPv4 one embedded */ if ((a->family == AF_INET) && (b->family == AF_INET6)) { if (IPV6_IPV4_IN_V6(b->ip6)) return (a->ip4.in_addr.s_addr == b->ip6.uint32[3]); } else if ((a->family == AF_INET6) && (b->family == AF_INET)) { if (IPV6_IPV4_IN_V6(a->ip6)) return (a->ip6.uint32[3] == b->ip4.in_addr.s_addr); } return 0; } /* ipport_equal * compares two IPAny_Port structures * unset means unequal * * returns 0 when not equal or when uninitialized */ int ipport_equal(const IP_Port *a, const IP_Port *b) { if (!a || !b) return 0; if (!a->port || (a->port != b->port)) return 0; return ip_equal(&a->ip, &b->ip); } /* nulls out ip */ void ip_reset(IP *ip) { if (!ip) return; memset(ip, 0, sizeof(IP)); } /* nulls out ip, sets family according to flag */ void ip_init(IP *ip, uint8_t ipv6enabled) { if (!ip) return; memset(ip, 0, sizeof(IP)); ip->family = ipv6enabled ? AF_INET6 : AF_INET; } /* checks if ip is valid */ int ip_isset(const IP *ip) { if (!ip) return 0; return (ip->family != 0); } /* checks if ip is valid */ int ipport_isset(const IP_Port *ipport) { if (!ipport) return 0; if (!ipport->port) return 0; return ip_isset(&ipport->ip); } /* copies an ip structure (careful about direction!) */ void ip_copy(IP *target, const IP *source) { if (!source || !target) return; memcpy(target, source, sizeof(IP)); } /* copies an ip_port structure (careful about direction!) */ void ipport_copy(IP_Port *target, const IP_Port *source) { if (!source || !target) return; memcpy(target, source, sizeof(IP_Port)); }; /* packing and unpacking functions */ void ip_pack(uint8_t *data, const IP *source) { data[0] = source->family; memcpy(data + 1, &source->ip6, SIZE_IP6); } void ip_unpack(IP *target, const uint8_t *data) { target->family = data[0]; memcpy(&target->ip6, data + 1, SIZE_IP6); } void ipport_pack(uint8_t *data, const IP_Port *source) { ip_pack(data, &source->ip); memcpy(data + SIZE_IP, &source->port, SIZE_PORT); } void ipport_unpack(IP_Port *target, const uint8_t *data) { ip_unpack(&target->ip, data); memcpy(&target->port, data + SIZE_IP, SIZE_PORT); } /* ip_ntoa * converts ip into a string * uses a static buffer, so mustn't used multiple times in the same output */ /* there would be INET6_ADDRSTRLEN, but it might be too short for the error message */ static char addresstext[96]; const char *ip_ntoa(const IP *ip) { if (ip) { if (ip->family == AF_INET) { /* returns standard quad-dotted notation */ struct in_addr *addr = (struct in_addr *)&ip->ip4; addresstext[0] = 0; inet_ntop(ip->family, addr, addresstext, sizeof(addresstext)); } else if (ip->family == AF_INET6) { /* returns hex-groups enclosed into square brackets */ struct in6_addr *addr = (struct in6_addr *)&ip->ip6; addresstext[0] = '['; inet_ntop(ip->family, addr, &addresstext[1], sizeof(addresstext) - 3); size_t len = strlen(addresstext); addresstext[len] = ']'; addresstext[len + 1] = 0; } else snprintf(addresstext, sizeof(addresstext), "(IP invalid, family %u)", ip->family); } else snprintf(addresstext, sizeof(addresstext), "(IP invalid: NULL)"); /* brute force protection against lacking termination */ addresstext[sizeof(addresstext) - 1] = 0; return addresstext; } /* * addr_parse_ip * directly parses the input into an IP structure * tries IPv4 first, then IPv6 * * input * address: dotted notation (IPv4: quad, IPv6: 16) or colon notation (IPv6) * * output * IP: family and the value is set on success * * returns 1 on success, 0 on failure */ int addr_parse_ip(const char *address, IP *to) { if (!address || !to) return 0; struct in_addr addr4; if (1 == inet_pton(AF_INET, address, &addr4)) { to->family = AF_INET; to->ip4.in_addr = addr4; return 1; } struct in6_addr addr6; if (1 == inet_pton(AF_INET6, address, &addr6)) { to->family = AF_INET6; to->ip6.in6_addr = addr6; return 1; } return 0; } /* * addr_resolve(): * uses getaddrinfo to resolve an address into an IP address * uses the first IPv4/IPv6 addresses returned by getaddrinfo * * input * address: a hostname (or something parseable to an IP address) * to: to.family MUST be initialized, either set to a specific IP version * (AF_INET/AF_INET6) or to the unspecified AF_UNSPEC (= 0), if both * IP versions are acceptable * extra can be NULL and is only set in special circumstances, see returns * * returns in *to a valid IPAny (v4/v6), * prefers v6 if ip.family was AF_UNSPEC and both available * returns in *extra an IPv4 address, if family was AF_UNSPEC and *to is AF_INET6 * returns 0 on failure */ int addr_resolve(const char *address, IP *to, IP *extra) { if (!address || !to) return 0; sa_family_t family = to->family; struct addrinfo *server = NULL; struct addrinfo *walker = NULL; struct addrinfo hints; int rc; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_DGRAM; // type of socket Tox uses. if (networking_at_startup() != 0) return 0; rc = getaddrinfo(address, NULL, &hints, &server); // Lookup failed. if (rc != 0) { return 0; } IP4 ip4; memset(&ip4, 0, sizeof(ip4)); IP6 ip6; memset(&ip6, 0, sizeof(ip6)); for (walker = server; (walker != NULL) && (rc != 3); walker = walker->ai_next) { switch (walker->ai_family) { case AF_INET: if (walker->ai_family == family) { /* AF_INET requested, done */ struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr; to->ip4.in_addr = addr->sin_addr; rc = 3; } else if (!(rc & 1)) { /* AF_UNSPEC requested, store away */ struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr; ip4.in_addr = addr->sin_addr; rc |= 1; } break; /* switch */ case AF_INET6: if (walker->ai_family == family) { /* AF_INET6 requested, done */ if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr; to->ip6.in6_addr = addr->sin6_addr; rc = 3; } } else if (!(rc & 2)) { /* AF_UNSPEC requested, store away */ if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr; ip6.in6_addr = addr->sin6_addr; rc |= 2; } } break; /* switch */ } } if (to->family == AF_UNSPEC) { if (rc & 2) { to->family = AF_INET6; to->ip6 = ip6; if ((rc & 1) && (extra != NULL)) { extra->family = AF_INET; extra->ip4 = ip4; } } else if (rc & 1) { to->family = AF_INET; to->ip4 = ip4; } else rc = 0; } freeaddrinfo(server); return rc; } /* * addr_resolve_or_parse_ip * resolves string into an IP address * * address: a hostname (or something parseable to an IP address) * to: to.family MUST be initialized, either set to a specific IP version * (AF_INET/AF_INET6) or to the unspecified AF_UNSPEC (= 0), if both * IP versions are acceptable * extra can be NULL and is only set in special circumstances, see returns * * returns in *tro a matching address (IPv6 or IPv4) * returns in *extra, if not NULL, an IPv4 address, if to->family was AF_UNSPEC * returns 1 on success * returns 0 on failure */ int addr_resolve_or_parse_ip(const char *address, IP *to, IP *extra) { if (!addr_resolve(address, to, extra)) if (!addr_parse_ip(address, to)) return 0; return 1; }