/* * Functions for the core networking. */ /* * Copyright © 2016-2017 The TokTok team. * Copyright © 2013 Tox project. * * This file is part of Tox, the free peer to peer instant messenger. * * Tox is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Tox is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Tox. If not, see . */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef __APPLE__ #define _DARWIN_C_SOURCE #endif #ifndef _XOPEN_SOURCE #define _XOPEN_SOURCE 600 #endif #if defined(_WIN32) && _WIN32_WINNT >= _WIN32_WINNT_WINXP #undef _WIN32_WINNT #define _WIN32_WINNT 0x501 #endif #include "network.h" #include "logger.h" #include "util.h" #include #ifdef __APPLE__ #include #include #endif #ifndef IPV6_ADD_MEMBERSHIP #ifdef IPV6_JOIN_GROUP #define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP #endif #endif #if !(defined(_WIN32) || defined(__WIN32__) || defined(WIN32)) #include #include #include #include #include #define TOX_EWOULDBLOCK EWOULDBLOCK #else #ifndef IPV6_V6ONLY #define IPV6_V6ONLY 27 #endif #define TOX_EWOULDBLOCK WSAEWOULDBLOCK static const char *inet_ntop(Family family, const void *addr, char *buf, size_t bufsize) { if (family == TOX_AF_INET) { struct sockaddr_in saddr; memset(&saddr, 0, sizeof(saddr)); saddr.sin_family = AF_INET; saddr.sin_addr = *(const struct in_addr *)addr; DWORD len = bufsize; if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) { return nullptr; } return buf; } else if (family == TOX_AF_INET6) { struct sockaddr_in6 saddr; memset(&saddr, 0, sizeof(saddr)); saddr.sin6_family = AF_INET6; saddr.sin6_addr = *(const struct in6_addr *)addr; DWORD len = bufsize; if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) { return nullptr; } return buf; } return nullptr; } static int inet_pton(Family family, const char *addrString, void *addrbuf) { if (family == TOX_AF_INET) { struct sockaddr_in saddr; memset(&saddr, 0, sizeof(saddr)); INT len = sizeof(saddr); if (WSAStringToAddress((LPTSTR)addrString, AF_INET, nullptr, (LPSOCKADDR)&saddr, &len)) { return 0; } *(struct in_addr *)addrbuf = saddr.sin_addr; return 1; } else if (family == TOX_AF_INET6) { struct sockaddr_in6 saddr; memset(&saddr, 0, sizeof(saddr)); INT len = sizeof(saddr); if (WSAStringToAddress((LPTSTR)addrString, AF_INET6, nullptr, (LPSOCKADDR)&saddr, &len)) { return 0; } *(struct in6_addr *)addrbuf = saddr.sin6_addr; return 1; } return 0; } #endif #if TOX_INET6_ADDRSTRLEN < INET6_ADDRSTRLEN #error TOX_INET6_ADDRSTRLEN should be greater or equal to INET6_ADDRSTRLEN (#INET6_ADDRSTRLEN) #endif #if TOX_INET_ADDRSTRLEN < INET_ADDRSTRLEN #error TOX_INET_ADDRSTRLEN should be greater or equal to INET_ADDRSTRLEN (#INET_ADDRSTRLEN) #endif static int make_proto(int proto); static int make_socktype(int type); static int make_family(int tox_family); static int make_tox_family(int family); static void get_ip4(IP4 *result, const struct in_addr *addr) { result->uint32 = addr->s_addr; } static void get_ip6(IP6 *result, const struct in6_addr *addr) { assert(sizeof(result->uint8) == sizeof(addr->s6_addr)); memcpy(result->uint8, addr->s6_addr, sizeof(result->uint8)); } static void fill_addr4(IP4 ip, struct in_addr *addr) { addr->s_addr = ip.uint32; } static void fill_addr6(IP6 ip, struct in6_addr *addr) { assert(sizeof(ip.uint8) == sizeof(addr->s6_addr)); memcpy(addr->s6_addr, ip.uint8, sizeof(ip.uint8)); } #if !defined(INADDR_LOOPBACK) #define INADDR_LOOPBACK 0x7f000001 #endif const IP4 IP4_BROADCAST = { INADDR_BROADCAST }; const IP6 IP6_BROADCAST = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; IP4 get_ip4_loopback(void) { IP4 loopback; loopback.uint32 = htonl(INADDR_LOOPBACK); return loopback; } IP6 get_ip6_loopback(void) { IP6 loopback; get_ip6(&loopback, &in6addr_loopback); return loopback; } /* Check if socket is valid. * * return 1 if valid * return 0 if not valid */ int sock_valid(Socket sock) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) if (sock == INVALID_SOCKET) { #else if (sock < 0) { #endif return 0; } return 1; } /* Close the socket. */ void kill_sock(Socket sock) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) closesocket(sock); #else close(sock); #endif } /* Set socket as nonblocking * * return 1 on success * return 0 on failure */ int set_socket_nonblock(Socket sock) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) u_long mode = 1; return (ioctlsocket(sock, FIONBIO, &mode) == 0); #else return (fcntl(sock, F_SETFL, O_NONBLOCK, 1) == 0); #endif } /* Set socket to not emit SIGPIPE * * return 1 on success * return 0 on failure */ int set_socket_nosigpipe(Socket sock) { #if defined(__MACH__) int set = 1; return (setsockopt(sock, SOL_SOCKET, SO_NOSIGPIPE, (const char *)&set, sizeof(int)) == 0); #else return 1; #endif } /* Enable SO_REUSEADDR on socket. * * return 1 on success * return 0 on failure */ int set_socket_reuseaddr(Socket sock) { int set = 1; return (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (const char *)&set, sizeof(set)) == 0); } /* Set socket to dual (IPv4 + IPv6 socket) * * return 1 on success * return 0 on failure */ int set_socket_dualstack(Socket sock) { int ipv6only = 0; socklen_t optsize = sizeof(ipv6only); int res = getsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&ipv6only, &optsize); if ((res == 0) && (ipv6only == 0)) { return 1; } ipv6only = 0; return (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (const char *)&ipv6only, sizeof(ipv6only)) == 0); } /* return current UNIX time in microseconds (us). */ static uint64_t current_time_actual(void) { uint64_t time; #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) /* This probably works fine */ FILETIME ft; GetSystemTimeAsFileTime(&ft); time = ft.dwHighDateTime; time <<= 32; time |= ft.dwLowDateTime; time -= 116444736000000000ULL; return time / 10; #else struct timeval a; gettimeofday(&a, nullptr); time = 1000000ULL * a.tv_sec + a.tv_usec; return time; #endif } #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) static uint64_t last_monotime; static uint64_t add_monotime; #endif /* return current monotonic time in milliseconds (ms). */ uint64_t current_time_monotonic(void) { uint64_t time; #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) uint64_t old_add_monotime = add_monotime; time = (uint64_t)GetTickCount() + add_monotime; /* Check if time has decreased because of 32 bit wrap from GetTickCount(), while avoiding false positives from race * conditions when multiple threads call this function at once */ if (time + 0x10000 < last_monotime) { uint32_t add = ~0; /* use old_add_monotime rather than simply incrementing add_monotime, to handle the case that many threads * simultaneously detect an overflow */ add_monotime = old_add_monotime + add; time += add; } last_monotime = time; #else struct timespec monotime; #if defined(__linux__) && defined(CLOCK_MONOTONIC_RAW) clock_gettime(CLOCK_MONOTONIC_RAW, &monotime); #elif defined(__APPLE__) clock_serv_t muhclock; mach_timespec_t machtime; host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &muhclock); clock_get_time(muhclock, &machtime); mach_port_deallocate(mach_task_self(), muhclock); monotime.tv_sec = machtime.tv_sec; monotime.tv_nsec = machtime.tv_nsec; #else clock_gettime(CLOCK_MONOTONIC, &monotime); #endif time = 1000ULL * monotime.tv_sec + (monotime.tv_nsec / 1000000ULL); #endif return time; } static uint32_t data_0(uint16_t buflen, const uint8_t *buffer) { return buflen > 4 ? net_ntohl(*(const uint32_t *)&buffer[1]) : 0; } static uint32_t data_1(uint16_t buflen, const uint8_t *buffer) { return buflen > 7 ? net_ntohl(*(const uint32_t *)&buffer[5]) : 0; } static void loglogdata(Logger *log, const char *message, const uint8_t *buffer, uint16_t buflen, IP_Port ip_port, int res) { char ip_str[IP_NTOA_LEN]; if (res < 0) { /* Windows doesn't necessarily know %zu */ int error = net_error(); const char *strerror = net_new_strerror(error); LOGGER_TRACE(log, "[%2u] %s %3u%c %s:%u (%u: %s) | %04x%04x", buffer[0], message, (buflen < 999 ? buflen : 999), 'E', ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), error, strerror, data_0(buflen, buffer), data_1(buflen, buffer)); net_kill_strerror(strerror); } else if ((res > 0) && ((size_t)res <= buflen)) { LOGGER_TRACE(log, "[%2u] %s %3u%c %s:%u (%u: %s) | %04x%04x", buffer[0], message, (res < 999 ? res : 999), ((size_t)res < buflen ? '<' : '='), ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), 0, "OK", data_0(buflen, buffer), data_1(buflen, buffer)); } else { /* empty or overwrite */ LOGGER_TRACE(log, "[%2u] %s %u%c%u %s:%u (%u: %s) | %04x%04x", buffer[0], message, res, (!res ? '!' : '>'), buflen, ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), 0, "OK", data_0(buflen, buffer), data_1(buflen, buffer)); } } typedef struct { packet_handler_callback function; void *object; } Packet_Handler; struct Networking_Core { Logger *log; Packet_Handler packethandlers[256]; Family family; uint16_t port; /* Our UDP socket. */ Socket sock; }; Family net_family(const Networking_Core *net) { return net->family; } uint16_t net_port(const Networking_Core *net) { return net->port; } /* Basic network functions: * Function to send packet(data) of length length to ip_port. */ int sendpacket(Networking_Core *net, IP_Port ip_port, const uint8_t *data, uint16_t length) { if (net->family == TOX_AF_UNSPEC) { /* Socket not initialized */ return -1; } /* socket TOX_AF_INET, but target IP NOT: can't send */ if ((net->family == TOX_AF_INET) && (ip_port.ip.family != TOX_AF_INET)) { return -1; } struct sockaddr_storage addr; size_t addrsize = 0; if (ip_port.ip.family == TOX_AF_INET && net->family == TOX_AF_INET6) { /* must convert to IPV4-in-IPV6 address */ IP6 ip6; /* there should be a macro for this in a standards compliant * environment, not found */ ip6.uint32[0] = 0; ip6.uint32[1] = 0; ip6.uint32[2] = net_htonl(0xFFFF); ip6.uint32[3] = ip_port.ip.ip.v4.uint32; ip_port.ip.family = TOX_AF_INET6; ip_port.ip.ip.v6 = ip6; } if (ip_port.ip.family == TOX_AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr; addrsize = sizeof(struct sockaddr_in); fill_addr4(ip_port.ip.ip.v4, &addr4->sin_addr); addr4->sin_family = AF_INET; addr4->sin_port = ip_port.port; } else if (ip_port.ip.family == TOX_AF_INET6) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); fill_addr6(ip_port.ip.ip.v6, &addr6->sin6_addr); addr6->sin6_family = AF_INET6; addr6->sin6_port = ip_port.port; addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; } else { /* unknown address type*/ return -1; } const int res = sendto(net->sock, (const char *) data, length, 0, (struct sockaddr *)&addr, addrsize); loglogdata(net->log, "O=>", data, length, ip_port, res); return res; } /* Function to receive data * ip and port of sender is put into ip_port. * Packet data is put into data. * Packet length is put into length. */ static int receivepacket(Logger *log, Socket sock, IP_Port *ip_port, uint8_t *data, uint32_t *length) { memset(ip_port, 0, sizeof(IP_Port)); struct sockaddr_storage addr; #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) int addrlen = sizeof(addr); #else socklen_t addrlen = sizeof(addr); #endif *length = 0; int fail_or_len = recvfrom(sock, (char *) data, MAX_UDP_PACKET_SIZE, 0, (struct sockaddr *)&addr, &addrlen); if (fail_or_len < 0) { int error = net_error(); if (fail_or_len < 0 && error != TOX_EWOULDBLOCK) { const char *strerror = net_new_strerror(error); LOGGER_ERROR(log, "Unexpected error reading from socket: %u, %s", error, strerror); net_kill_strerror(strerror); } return -1; /* Nothing received. */ } *length = (uint32_t)fail_or_len; if (addr.ss_family == AF_INET) { struct sockaddr_in *addr_in = (struct sockaddr_in *)&addr; ip_port->ip.family = make_tox_family(addr_in->sin_family); get_ip4(&ip_port->ip.ip.v4, &addr_in->sin_addr); ip_port->port = addr_in->sin_port; } else if (addr.ss_family == AF_INET6) { struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *)&addr; ip_port->ip.family = make_tox_family(addr_in6->sin6_family); get_ip6(&ip_port->ip.ip.v6, &addr_in6->sin6_addr); ip_port->port = addr_in6->sin6_port; if (IPV6_IPV4_IN_V6(ip_port->ip.ip.v6)) { ip_port->ip.family = TOX_AF_INET; ip_port->ip.ip.v4.uint32 = ip_port->ip.ip.v6.uint32[3]; } } else { return -1; } loglogdata(log, "=>O", data, MAX_UDP_PACKET_SIZE, *ip_port, *length); return 0; } void networking_registerhandler(Networking_Core *net, uint8_t byte, packet_handler_callback cb, void *object) { net->packethandlers[byte].function = cb; net->packethandlers[byte].object = object; } void networking_poll(Networking_Core *net, void *userdata) { if (net->family == 0) { /* Socket not initialized */ return; } unix_time_update(); IP_Port ip_port; uint8_t data[MAX_UDP_PACKET_SIZE]; uint32_t length; while (receivepacket(net->log, net->sock, &ip_port, data, &length) != -1) { if (length < 1) { continue; } if (!(net->packethandlers[data[0]].function)) { LOGGER_WARNING(net->log, "[%02u] -- Packet has no handler", data[0]); continue; } net->packethandlers[data[0]].function(net->packethandlers[data[0]].object, ip_port, data, length, userdata); } } #ifndef VANILLA_NACL /* Used for sodium_init() */ #include #endif static uint8_t at_startup_ran = 0; int networking_at_startup(void) { if (at_startup_ran != 0) { return 0; } #ifndef VANILLA_NACL #ifdef USE_RANDOMBYTES_STIR randombytes_stir(); #else if (sodium_init() == -1) { return -1; } #endif /*USE_RANDOMBYTES_STIR*/ #endif/*VANILLA_NACL*/ #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) WSADATA wsaData; if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR) { return -1; } #endif srand((uint32_t)current_time_actual()); at_startup_ran = 1; return 0; } /* TODO(irungentoo): Put this somewhere */ #if 0 static void at_shutdown(void) { #if defined(_WIN32) || defined(__WIN32__) || defined (WIN32) WSACleanup(); #endif } #endif /* Initialize networking. * Added for reverse compatibility with old new_networking calls. */ Networking_Core *new_networking(Logger *log, IP ip, uint16_t port) { return new_networking_ex(log, ip, port, port + (TOX_PORTRANGE_TO - TOX_PORTRANGE_FROM), nullptr); } /* Initialize networking. * Bind to ip and port. * ip must be in network order EX: 127.0.0.1 = (7F000001). * port is in host byte order (this means don't worry about it). * * return Networking_Core object if no problems * return NULL if there are problems. * * If error is non NULL it is set to 0 if no issues, 1 if socket related error, 2 if other. */ Networking_Core *new_networking_ex(Logger *log, IP ip, uint16_t port_from, uint16_t port_to, unsigned int *error) { /* If both from and to are 0, use default port range * If one is 0 and the other is non-0, use the non-0 value as only port * If from > to, swap */ if (port_from == 0 && port_to == 0) { port_from = TOX_PORTRANGE_FROM; port_to = TOX_PORTRANGE_TO; } else if (port_from == 0 && port_to != 0) { port_from = port_to; } else if (port_from != 0 && port_to == 0) { port_to = port_from; } else if (port_from > port_to) { uint16_t temp = port_from; port_from = port_to; port_to = temp; } if (error) { *error = 2; } /* maybe check for invalid IPs like 224+.x.y.z? if there is any IP set ever */ if (ip.family != TOX_AF_INET && ip.family != TOX_AF_INET6) { LOGGER_ERROR(log, "Invalid address family: %u", ip.family); return nullptr; } if (networking_at_startup() != 0) { return nullptr; } Networking_Core *temp = (Networking_Core *)calloc(1, sizeof(Networking_Core)); if (temp == nullptr) { return nullptr; } temp->log = log; temp->family = ip.family; temp->port = 0; /* Initialize our socket. */ /* add log message what we're creating */ temp->sock = net_socket(temp->family, TOX_SOCK_DGRAM, TOX_PROTO_UDP); /* Check for socket error. */ if (!sock_valid(temp->sock)) { int neterror = net_error(); const char *strerror = net_new_strerror(neterror); LOGGER_ERROR(log, "Failed to get a socket?! %d, %s", neterror, strerror); net_kill_strerror(strerror); free(temp); if (error) { *error = 1; } return nullptr; } /* Functions to increase the size of the send and receive UDP buffers. */ int n = 1024 * 1024 * 2; setsockopt(temp->sock, SOL_SOCKET, SO_RCVBUF, (const char *)&n, sizeof(n)); setsockopt(temp->sock, SOL_SOCKET, SO_SNDBUF, (const char *)&n, sizeof(n)); /* Enable broadcast on socket */ int broadcast = 1; setsockopt(temp->sock, SOL_SOCKET, SO_BROADCAST, (const char *)&broadcast, sizeof(broadcast)); /* iOS UDP sockets are weird and apparently can SIGPIPE */ if (!set_socket_nosigpipe(temp->sock)) { kill_networking(temp); if (error) { *error = 1; } return nullptr; } /* Set socket nonblocking. */ if (!set_socket_nonblock(temp->sock)) { kill_networking(temp); if (error) { *error = 1; } return nullptr; } /* Bind our socket to port PORT and the given IP address (usually 0.0.0.0 or ::) */ uint16_t *portptr = nullptr; struct sockaddr_storage addr; size_t addrsize; memset(&addr, 0, sizeof(struct sockaddr_storage)); if (temp->family == TOX_AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr; addrsize = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_port = 0; fill_addr4(ip.ip.v4, &addr4->sin_addr); portptr = &addr4->sin_port; } else if (temp->family == TOX_AF_INET6) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = 0; fill_addr6(ip.ip.v6, &addr6->sin6_addr); addr6->sin6_flowinfo = 0; addr6->sin6_scope_id = 0; portptr = &addr6->sin6_port; } else { free(temp); return nullptr; } if (ip.family == TOX_AF_INET6) { int is_dualstack = set_socket_dualstack(temp->sock); LOGGER_DEBUG(log, "Dual-stack socket: %s", is_dualstack ? "enabled" : "Failed to enable, won't be able to receive from/send to IPv4 addresses"); /* multicast local nodes */ struct ipv6_mreq mreq; memset(&mreq, 0, sizeof(mreq)); mreq.ipv6mr_multiaddr.s6_addr[ 0] = 0xFF; mreq.ipv6mr_multiaddr.s6_addr[ 1] = 0x02; mreq.ipv6mr_multiaddr.s6_addr[15] = 0x01; mreq.ipv6mr_interface = 0; int res = setsockopt(temp->sock, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, (const char *)&mreq, sizeof(mreq)); int neterror = net_error(); const char *strerror = net_new_strerror(neterror); LOGGER_DEBUG(log, res < 0 ? "Failed to activate local multicast membership. (%d, %s)" : "Local multicast group FF02::1 joined successfully", neterror, strerror); net_kill_strerror(strerror); } /* a hanging program or a different user might block the standard port; * as long as it isn't a parameter coming from the commandline, * try a few ports after it, to see if we can find a "free" one * * if we go on without binding, the first sendto() automatically binds to * a free port chosen by the system (i.e. anything from 1024 to 65535) * * returning NULL after bind fails has both advantages and disadvantages: * advantage: * we can rely on getting the port in the range 33445..33450, which * enables us to tell joe user to open their firewall to a small range * * disadvantage: * some clients might not test return of tox_new(), blindly assuming that * it worked ok (which it did previously without a successful bind) */ uint16_t port_to_try = port_from; *portptr = net_htons(port_to_try); int tries; for (tries = port_from; tries <= port_to; tries++) { int res = bind(temp->sock, (struct sockaddr *)&addr, addrsize); if (!res) { temp->port = *portptr; char ip_str[IP_NTOA_LEN]; LOGGER_DEBUG(log, "Bound successfully to %s:%u", ip_ntoa(&ip, ip_str, sizeof(ip_str)), net_ntohs(temp->port)); /* errno isn't reset on success, only set on failure, the failed * binds with parallel clients yield a -EPERM to the outside if * errno isn't cleared here */ if (tries > 0) { errno = 0; } if (error) { *error = 0; } return temp; } port_to_try++; if (port_to_try > port_to) { port_to_try = port_from; } *portptr = net_htons(port_to_try); } char ip_str[IP_NTOA_LEN]; int neterror = net_error(); const char *strerror = net_new_strerror(neterror); LOGGER_ERROR(log, "Failed to bind socket: %d, %s IP: %s port_from: %u port_to: %u", neterror, strerror, ip_ntoa(&ip, ip_str, sizeof(ip_str)), port_from, port_to); net_kill_strerror(strerror); kill_networking(temp); if (error) { *error = 1; } return nullptr; } Networking_Core *new_networking_no_udp(Logger *log) { /* this is the easiest way to completely disable UDP without changing too much code. */ Networking_Core *net = (Networking_Core *)calloc(1, sizeof(Networking_Core)); if (net == nullptr) { return nullptr; } net->log = log; return net; } /* Function to cleanup networking stuff. */ void kill_networking(Networking_Core *net) { if (!net) { return; } if (net->family != 0) { /* Socket not initialized */ kill_sock(net->sock); } free(net); } /* ip_equal * compares two IPAny structures * unset means unequal * * returns 0 when not equal or when uninitialized */ int ip_equal(const IP *a, const IP *b) { if (!a || !b) { return 0; } /* same family */ if (a->family == b->family) { if (a->family == TOX_AF_INET || a->family == TCP_INET) { struct in_addr addr_a; struct in_addr addr_b; fill_addr4(a->ip.v4, &addr_a); fill_addr4(b->ip.v4, &addr_b); return addr_a.s_addr == addr_b.s_addr; } if (a->family == TOX_AF_INET6 || a->family == TCP_INET6) { return a->ip.v6.uint64[0] == b->ip.v6.uint64[0] && a->ip.v6.uint64[1] == b->ip.v6.uint64[1]; } return 0; } /* different family: check on the IPv6 one if it is the IPv4 one embedded */ if ((a->family == TOX_AF_INET) && (b->family == TOX_AF_INET6)) { if (IPV6_IPV4_IN_V6(b->ip.v6)) { struct in_addr addr_a; fill_addr4(a->ip.v4, &addr_a); return addr_a.s_addr == b->ip.v6.uint32[3]; } } else if ((a->family == TOX_AF_INET6) && (b->family == TOX_AF_INET)) { if (IPV6_IPV4_IN_V6(a->ip.v6)) { struct in_addr addr_b; fill_addr4(b->ip.v4, &addr_b); return a->ip.v6.uint32[3] == addr_b.s_addr; } } return 0; } /* ipport_equal * compares two IPAny_Port structures * unset means unequal * * returns 0 when not equal or when uninitialized */ int ipport_equal(const IP_Port *a, const IP_Port *b) { if (!a || !b) { return 0; } if (!a->port || (a->port != b->port)) { return 0; } return ip_equal(&a->ip, &b->ip); } /* nulls out ip */ void ip_reset(IP *ip) { if (!ip) { return; } memset(ip, 0, sizeof(IP)); } /* nulls out ip, sets family according to flag */ void ip_init(IP *ip, bool ipv6enabled) { if (!ip) { return; } memset(ip, 0, sizeof(IP)); ip->family = ipv6enabled ? TOX_AF_INET6 : TOX_AF_INET; } /* checks if ip is valid */ int ip_isset(const IP *ip) { if (!ip) { return 0; } return (ip->family != 0); } /* checks if ip is valid */ int ipport_isset(const IP_Port *ipport) { if (!ipport) { return 0; } if (!ipport->port) { return 0; } return ip_isset(&ipport->ip); } /* copies an ip structure (careful about direction!) */ void ip_copy(IP *target, const IP *source) { if (!source || !target) { return; } memcpy(target, source, sizeof(IP)); } /* copies an ip_port structure (careful about direction!) */ void ipport_copy(IP_Port *target, const IP_Port *source) { if (!source || !target) { return; } memcpy(target, source, sizeof(IP_Port)); } /* ip_ntoa * converts ip into a string * ip_str must be of length at least IP_NTOA_LEN * * IPv6 addresses are enclosed into square brackets, i.e. "[IPv6]" * writes error message into the buffer on error * * returns ip_str */ const char *ip_ntoa(const IP *ip, char *ip_str, size_t length) { if (length < IP_NTOA_LEN) { snprintf(ip_str, length, "Bad buf length"); return ip_str; } if (ip) { const int family = make_family(ip->family); if (ip->family == TOX_AF_INET) { /* returns standard quad-dotted notation */ struct in_addr addr; fill_addr4(ip->ip.v4, &addr); ip_str[0] = 0; inet_ntop(family, &addr, ip_str, length); } else if (ip->family == TOX_AF_INET6) { /* returns hex-groups enclosed into square brackets */ struct in6_addr addr; fill_addr6(ip->ip.v6, &addr); ip_str[0] = '['; inet_ntop(family, &addr, &ip_str[1], length - 3); size_t len = strlen(ip_str); ip_str[len] = ']'; ip_str[len + 1] = 0; } else { snprintf(ip_str, length, "(IP invalid, family %u)", ip->family); } } else { snprintf(ip_str, length, "(IP invalid: NULL)"); } /* brute force protection against lacking termination */ ip_str[length - 1] = 0; return ip_str; } /* * ip_parse_addr * parses IP structure into an address string * * input * ip: ip of TOX_AF_INET or TOX_AF_INET6 families * length: length of the address buffer * Must be at least INET_ADDRSTRLEN for TOX_AF_INET * and INET6_ADDRSTRLEN for TOX_AF_INET6 * * output * address: dotted notation (IPv4: quad, IPv6: 16) or colon notation (IPv6) * * returns 1 on success, 0 on failure */ int ip_parse_addr(const IP *ip, char *address, size_t length) { if (!address || !ip) { return 0; } if (ip->family == TOX_AF_INET) { const struct in_addr *addr = (const struct in_addr *)&ip->ip.v4; return inet_ntop(ip->family, addr, address, length) != nullptr; } if (ip->family == TOX_AF_INET6) { const struct in6_addr *addr = (const struct in6_addr *)&ip->ip.v6; return inet_ntop(ip->family, addr, address, length) != nullptr; } return 0; } /* * addr_parse_ip * directly parses the input into an IP structure * tries IPv4 first, then IPv6 * * input * address: dotted notation (IPv4: quad, IPv6: 16) or colon notation (IPv6) * * output * IP: family and the value is set on success * * returns 1 on success, 0 on failure */ int addr_parse_ip(const char *address, IP *to) { if (!address || !to) { return 0; } struct in_addr addr4; if (inet_pton(AF_INET, address, &addr4) == 1) { to->family = TOX_AF_INET; get_ip4(&to->ip.v4, &addr4); return 1; } struct in6_addr addr6; if (inet_pton(AF_INET6, address, &addr6) == 1) { to->family = TOX_AF_INET6; get_ip6(&to->ip.v6, &addr6); return 1; } return 0; } /* * addr_resolve(): * uses getaddrinfo to resolve an address into an IP address * uses the first IPv4/IPv6 addresses returned by getaddrinfo * * input * address: a hostname (or something parseable to an IP address) * to: to.family MUST be initialized, either set to a specific IP version * (TOX_AF_INET/TOX_AF_INET6) or to the unspecified AF_UNSPEC (= 0), if both * IP versions are acceptable * extra can be NULL and is only set in special circumstances, see returns * * returns in *to a valid IPAny (v4/v6), * prefers v6 if ip.family was AF_UNSPEC and both available * returns in *extra an IPv4 address, if family was AF_UNSPEC and *to is TOX_AF_INET6 * returns 0 on failure, TOX_ADDR_RESOLVE_* on success. */ int addr_resolve(const char *address, IP *to, IP *extra) { if (!address || !to) { return 0; } Family tox_family = to->family; Family family = make_family(tox_family); struct addrinfo *server = nullptr; struct addrinfo *walker = nullptr; struct addrinfo hints; int rc; int result = 0; int done = 0; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_DGRAM; // type of socket Tox uses. if (networking_at_startup() != 0) { return 0; } rc = getaddrinfo(address, nullptr, &hints, &server); // Lookup failed. if (rc != 0) { return 0; } IP ip4; ip_init(&ip4, 0); // ipv6enabled = 0 IP ip6; ip_init(&ip6, 1); // ipv6enabled = 1 for (walker = server; (walker != nullptr) && !done; walker = walker->ai_next) { switch (walker->ai_family) { case AF_INET: if (walker->ai_family == family) { /* AF_INET requested, done */ struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr; get_ip4(&to->ip.v4, &addr->sin_addr); result = TOX_ADDR_RESOLVE_INET; done = 1; } else if (!(result & TOX_ADDR_RESOLVE_INET)) { /* AF_UNSPEC requested, store away */ struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr; get_ip4(&ip4.ip.v4, &addr->sin_addr); result |= TOX_ADDR_RESOLVE_INET; } break; /* switch */ case AF_INET6: if (walker->ai_family == family) { /* AF_INET6 requested, done */ if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr; get_ip6(&to->ip.v6, &addr->sin6_addr); result = TOX_ADDR_RESOLVE_INET6; done = 1; } } else if (!(result & TOX_ADDR_RESOLVE_INET6)) { /* AF_UNSPEC requested, store away */ if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr; get_ip6(&ip6.ip.v6, &addr->sin6_addr); result |= TOX_ADDR_RESOLVE_INET6; } } break; /* switch */ } } if (family == AF_UNSPEC) { if (result & TOX_ADDR_RESOLVE_INET6) { ip_copy(to, &ip6); if ((result & TOX_ADDR_RESOLVE_INET) && (extra != nullptr)) { ip_copy(extra, &ip4); } } else if (result & TOX_ADDR_RESOLVE_INET) { ip_copy(to, &ip4); } else { result = 0; } } freeaddrinfo(server); return result; } /* * addr_resolve_or_parse_ip * resolves string into an IP address * * address: a hostname (or something parseable to an IP address) * to: to.family MUST be initialized, either set to a specific IP version * (TOX_AF_INET/TOX_AF_INET6) or to the unspecified AF_UNSPEC (= 0), if both * IP versions are acceptable * extra can be NULL and is only set in special circumstances, see returns * * returns in *tro a matching address (IPv6 or IPv4) * returns in *extra, if not NULL, an IPv4 address, if to->family was AF_UNSPEC * returns 1 on success * returns 0 on failure */ int addr_resolve_or_parse_ip(const char *address, IP *to, IP *extra) { if (!addr_resolve(address, to, extra)) { if (!addr_parse_ip(address, to)) { return 0; } } return 1; } int net_connect(Socket sock, IP_Port ip_port) { struct sockaddr_storage addr = {0}; size_t addrsize; if (ip_port.ip.family == TOX_AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr; addrsize = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; fill_addr4(ip_port.ip.ip.v4, &addr4->sin_addr); addr4->sin_port = ip_port.port; } else if (ip_port.ip.family == TOX_AF_INET6) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; fill_addr6(ip_port.ip.ip.v6, &addr6->sin6_addr); addr6->sin6_port = ip_port.port; } else { return 0; } return connect(sock, (struct sockaddr *)&addr, addrsize); } int32_t net_getipport(const char *node, IP_Port **res, int tox_type) { struct addrinfo *infos; int ret = getaddrinfo(node, nullptr, nullptr, &infos); *res = nullptr; if (ret != 0) { return -1; } // Used to avoid malloc parameter overflow const size_t MAX_COUNT = MIN(SIZE_MAX, INT32_MAX) / sizeof(IP_Port); int type = make_socktype(tox_type); struct addrinfo *cur; size_t count = 0; for (cur = infos; count < MAX_COUNT && cur != nullptr; cur = cur->ai_next) { if (cur->ai_socktype && type > 0 && cur->ai_socktype != type) { continue; } if (cur->ai_family != AF_INET && cur->ai_family != AF_INET6) { continue; } count++; } assert(count <= MAX_COUNT); if (count == 0) { freeaddrinfo(infos); return 0; } *res = (IP_Port *)malloc(sizeof(IP_Port) * count); if (*res == nullptr) { freeaddrinfo(infos); return -1; } IP_Port *ip_port = *res; for (cur = infos; cur != nullptr; cur = cur->ai_next) { if (cur->ai_socktype && type > 0 && cur->ai_socktype != type) { continue; } if (cur->ai_family == AF_INET) { struct sockaddr_in *addr = (struct sockaddr_in *)cur->ai_addr; memcpy(&ip_port->ip.ip.v4, &addr->sin_addr, sizeof(IP4)); } else if (cur->ai_family == AF_INET6) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)cur->ai_addr; memcpy(&ip_port->ip.ip.v6, &addr->sin6_addr, sizeof(IP6)); } else { continue; } ip_port->ip.family = make_tox_family(cur->ai_family); ip_port++; } freeaddrinfo(infos); return count; } void net_freeipport(IP_Port *ip_ports) { free(ip_ports); } /* return 1 on success * return 0 on failure */ int bind_to_port(Socket sock, int family, uint16_t port) { struct sockaddr_storage addr = {0}; size_t addrsize; if (family == TOX_AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr; addrsize = sizeof(struct sockaddr_in); addr4->sin_family = AF_INET; addr4->sin_port = net_htons(port); } else if (family == TOX_AF_INET6) { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr; addrsize = sizeof(struct sockaddr_in6); addr6->sin6_family = AF_INET6; addr6->sin6_port = net_htons(port); } else { return 0; } return (bind(sock, (struct sockaddr *)&addr, addrsize) == 0); } static int make_tox_family(int family) { switch (family) { case AF_INET: return TOX_AF_INET; case AF_INET6: return TOX_AF_INET6; case AF_UNSPEC: return TOX_AF_UNSPEC; default: return family; } } static int make_family(int tox_family) { switch (tox_family) { case TOX_AF_INET: return AF_INET; case TOX_AF_INET6: return AF_INET6; case TOX_AF_UNSPEC: return AF_UNSPEC; default: return tox_family; } } static int make_socktype(int type) { switch (type) { case TOX_SOCK_STREAM: return SOCK_STREAM; case TOX_SOCK_DGRAM: return SOCK_DGRAM; default: return type; } } static int make_proto(int proto) { switch (proto) { case TOX_PROTO_TCP: return IPPROTO_TCP; case TOX_PROTO_UDP: return IPPROTO_UDP; default: return proto; } } Socket net_socket(int domain, int type, int protocol) { int platform_domain = make_family(domain); int platform_type = make_socktype(type); int platform_prot = make_proto(protocol); return socket(platform_domain, platform_type, platform_prot); } uint32_t net_htonl(uint32_t hostlong) { return htonl(hostlong); } uint16_t net_htons(uint16_t hostshort) { return htons(hostshort); } uint32_t net_ntohl(uint32_t hostlong) { return ntohl(hostlong); } uint16_t net_ntohs(uint16_t hostshort) { return ntohs(hostshort); } size_t net_pack_u16(uint8_t *bytes, uint16_t v) { bytes[0] = (v >> 8) & 0xff; bytes[1] = v & 0xff; return sizeof(v); } size_t net_pack_u32(uint8_t *bytes, uint32_t v) { uint8_t *p = bytes; p += net_pack_u16(p, (v >> 16) & 0xffff); p += net_pack_u16(p, v & 0xffff); return p - bytes; } size_t net_pack_u64(uint8_t *bytes, uint64_t v) { uint8_t *p = bytes; p += net_pack_u32(p, (v >> 32) & 0xffffffff); p += net_pack_u32(p, v & 0xffffffff); return p - bytes; } size_t net_unpack_u16(const uint8_t *bytes, uint16_t *v) { uint8_t hi = bytes[0]; uint8_t lo = bytes[1]; *v = ((uint16_t)hi << 8) | lo; return sizeof(*v); } size_t net_unpack_u32(const uint8_t *bytes, uint32_t *v) { const uint8_t *p = bytes; uint16_t lo, hi; p += net_unpack_u16(p, &hi); p += net_unpack_u16(p, &lo); *v = ((uint32_t)hi << 16) | lo; return p - bytes; } size_t net_unpack_u64(const uint8_t *bytes, uint64_t *v) { const uint8_t *p = bytes; uint32_t lo, hi; p += net_unpack_u32(p, &hi); p += net_unpack_u32(p, &lo); *v = ((uint64_t)hi << 32) | lo; return p - bytes; } int net_error(void) { #if defined(_WIN32) || defined(__WIN32__) || defined(WIN32) return WSAGetLastError(); #else return errno; #endif } const char *net_new_strerror(int error) { #if defined(_WIN32) || defined(__WIN32__) || defined(WIN32) char *str = nullptr; // Windows API is weird. The 5th function arg is of char* type, but we // have to pass char** so that it could assign new memory block to our // pointer, so we have to cast our char** to char* for the compilation // not to fail (otherwise it would fail to find a variant of this function // accepting char** as the 5th arg) and Windows inside casts it back // to char** to do the assignment. So no, this cast you see here, although // it looks weird, is not a mistake. FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr, error, 0, (char *)&str, 0, nullptr); return str; #else return strerror(error); #endif } void net_kill_strerror(const char *strerror) { #if defined(_WIN32) || defined(__WIN32__) || defined(WIN32) LocalFree((char *)strerror); #endif }