{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE ScopedTypeVariables #-} module Tox where import Control.Arrow import Control.Concurrent.STM import qualified Crypto.Cipher.Salsa as Salsa import qualified Crypto.Cipher.XSalsa as XSalsa import Crypto.ECC.Class import qualified Crypto.Error as Cryptonite import Crypto.Error.Types import qualified Crypto.MAC.Poly1305 as Poly1305 import Crypto.PubKey.Curve25519 import Crypto.PubKey.ECC.Types import Crypto.Random import Data.Bool import Data.ByteArray as BA import Data.ByteString (ByteString) import Data.ByteString as B import qualified Data.ByteString.Base16 as Base16 import qualified Data.ByteString.Char8 as C8 import Data.ByteString.Lazy (toStrict) import Data.Data import Data.IP import Data.Maybe import Data.Monoid import qualified Data.Serialize as S import Data.Typeable import Data.Word import Foreign.Marshal.Alloc import Foreign.Ptr import Foreign.Storable import GHC.Generics (Generic) import Network.Address (Address, fromSockAddr, sockAddrPort, toSockAddr, withPort) import Network.QueryResponse import Network.Socket import System.Endian newtype NodeId = NodeId ByteString deriving (Eq,Ord,Show,ByteArrayAccess) instance S.Serialize NodeId where get = NodeId <$> S.getBytes 32 put (NodeId bs) = S.putByteString bs data NodeInfo = NodeInfo { nodeId :: NodeId , nodeIP :: IP , nodePort :: PortNumber } nodeAddr :: NodeInfo -> SockAddr nodeAddr (NodeInfo _ ip port) = toSockAddr ip `withPort` port nodeInfo :: NodeId -> SockAddr -> Either String NodeInfo nodeInfo nid saddr | Just ip <- fromSockAddr saddr , Just port <- sockAddrPort saddr = Right $ NodeInfo nid ip port | otherwise = Left "Address family not supported." data TransactionId = TransactionId { transactionKey :: Nonce8 -- ^ Used to lookup pending query. , cryptoNonce :: Nonce24 -- ^ Used during the encryption layer. } newtype Method = MessageType Word8 deriving (Eq, Ord, S.Serialize) pattern PingType = MessageType 0 pattern PongType = MessageType 1 pattern GetNodesType = MessageType 2 pattern SendNodesType = MessageType 4 instance Show Method where showsPrec d PingType = mappend "PingType" showsPrec d PongType = mappend "PongType" showsPrec d GetNodesType = mappend "GetNodesType" showsPrec d SendNodesType = mappend "SendNodesType" showsPrec d (MessageType x) = mappend "MessageType " . showsPrec (d+1) x newtype Nonce8 = Nonce8 Word64 deriving (Eq, Ord) instance ByteArrayAccess Nonce8 where length _ = 8 withByteArray (Nonce8 w64) kont = allocaBytes 8 $ \p -> do poke (castPtr p :: Ptr Word64) $ toBE64 w64 kont p instance Show Nonce8 where showsPrec d nonce = quoted (mappend $ bin2hex nonce) newtype Nonce24 = Nonce24 ByteString deriving (Eq, Ord, ByteArrayAccess) instance Show Nonce24 where showsPrec d nonce = quoted (mappend $ bin2hex nonce) instance S.Serialize Nonce24 where get = Nonce24 <$> S.getBytes 24 put (Nonce24 bs) = S.putByteString bs quoted :: ShowS -> ShowS quoted shows s = '"':shows ('"':s) bin2hex :: ByteArrayAccess bs => bs -> String bin2hex = C8.unpack . Base16.encode . convert data Message a = Message { msgType :: Method , msgOrigin :: NodeId , msgNonce :: Nonce24 , msgPayload :: a } deriving (Eq, Show, Generic, Functor, Foldable, Traversable) data Ciphered = Ciphered { cipheredMAC :: Poly1305.Auth , cipheredBytes :: ByteString } deriving Eq getMessage :: S.Get (Message Ciphered) getMessage = do typ <- S.get nid <- S.get tid <- S.get mac <- Poly1305.Auth . convert <$> S.getBytes 16 cnt <- S.remaining bs <- S.getBytes cnt return Message { msgType = typ , msgOrigin = nid , msgNonce = tid , msgPayload = Ciphered mac bs } putMessage :: Message Ciphered -> S.Put putMessage (Message {..}) = do S.put msgType S.put msgOrigin S.put msgNonce let Ciphered (Poly1305.Auth mac) bs = msgPayload S.putByteString (convert mac) S.putByteString bs -- TODO: Cache symmetric keys. data SecretsCache = SecretsCache newEmptyCache = return SecretsCache id2key :: NodeId -> PublicKey id2key recipient = case publicKey recipient of CryptoPassed key -> key -- This should never happen because a NodeId is 32 bytes. CryptoFailed e -> error ("Unexpected pattern fail: "++show e) key2id :: PublicKey -> NodeId key2id pk = case S.decode (BA.convert pk) of Left _ -> error "key2id" Right nid -> nid zeros32 :: Bytes zeros32 = BA.replicate 32 0 zeros24 :: Bytes zeros24 = BA.take 24 zeros32 hsalsa20 k n = a <> b where Salsa.State st = XSalsa.initialize 20 k n (_, as) = BA.splitAt 4 st (a, xs) = BA.splitAt 16 as (_, bs) = BA.splitAt 24 xs (b, _ ) = BA.splitAt 16 bs computeSharedSecret :: SecretKey -> NodeId -> Nonce24 -> (Poly1305.State, XSalsa.State) computeSharedSecret sk recipient nonce = (hash, crypt) where -- diffie helman shared = ecdh (Proxy :: Proxy Curve_X25519) sk (id2key recipient) -- shared secret XSalsa key k = hsalsa20 shared zeros24 -- cipher state st0 = XSalsa.initialize 20 k nonce -- Poly1305 key (rs, crypt) = XSalsa.combine st0 zeros32 -- Since rs is 32 bytes, this pattern should never fail... Cryptonite.CryptoPassed hash = Poly1305.initialize rs encryptMessage :: SecretKey -> SecretsCache -> NodeId -> Message ByteString -> Message Ciphered encryptMessage sk _ recipient plaintext = withSecret encipherAndHash sk recipient (msgNonce plaintext) <$> plaintext decryptMessage :: SecretKey -> SecretsCache -> Message Ciphered -> Either String (Message ByteString) decryptMessage sk _ ciphertext = mapM (withSecret decipherAndAuth sk (msgOrigin ciphertext) (msgNonce ciphertext)) ciphertext withSecret f sk recipient nonce x = f hash crypt x where (hash, crypt) = computeSharedSecret sk recipient nonce encipherAndHash :: Poly1305.State -> XSalsa.State -> ByteString -> Ciphered encipherAndHash hash crypt m = Ciphered a c where c = fst . XSalsa.combine crypt $ m a = Poly1305.finalize . Poly1305.update hash $ c decipherAndAuth :: Poly1305.State -> XSalsa.State -> Ciphered -> Either String ByteString decipherAndAuth hash crypt (Ciphered mac c) | (a == mac) = Right m | otherwise = Left "decipherAndAuth: auth fail" where m = fst . XSalsa.combine crypt $ c a = Poly1305.finalize . Poly1305.update hash $ c -- TODO: -- Represents the encrypted portion of a Tox packet. -- data Payload a = Payload a !Nonce8 -- -- Generic packet type: Message (Payload ByteString) parsePacket :: SecretKey -> SecretsCache -> ByteString -> SockAddr -> Either String (Message ByteString, NodeInfo) parsePacket sk cache bs addr = do ciphered <- S.runGet getMessage bs msg <- decryptMessage sk cache ciphered ni <- nodeInfo (msgOrigin msg) addr return (msg, ni) encodePacket :: SecretKey -> SecretsCache -> Message ByteString -> NodeInfo -> (ByteString, SockAddr) encodePacket sk cache msg ni = ( S.runPut . putMessage $ encryptMessage sk cache (nodeId ni) msg , nodeAddr ni ) newClient :: SockAddr -> IO (Client String Method TransactionId NodeInfo (Message ByteString)) newClient addr = do udp <- udpTransport addr secret <- generateSecretKey let pubkey = key2id $ toPublic secret cache <- newEmptyCache drg <- getSystemDRG self <- atomically $ newTVar $ NodeInfo pubkey (fromMaybe (toEnum 0) $ fromSockAddr addr) (fromMaybe 0 $ sockAddrPort addr) let net = layerTransport (parsePacket secret cache) (encodePacket secret cache) udp dispatch tbl = DispatchMethods { classifyInbound = classify , lookupHandler = handlers , tableMethods = tbl } genNonce24 var (TransactionId nonce8 _) = atomically $ do (g,pending) <- readTVar var let (bs, g') = randomBytesGenerate 24 g writeTVar var (g',pending) return $ TransactionId nonce8 (Nonce24 bs) client tbl var = Client { clientNet = net , clientDispatcher = dispatch tbl , clientErrorReporter = ignoreErrors -- TODO , clientPending = var , clientAddress = atomically (readTVar self) , clientResponseId = genNonce24 var } if fitsInInt (Proxy :: Proxy Word64) then do let intmapT = transactionMethods (contramapT intKey intMapMethods) gen intmap_var <- atomically $ newTVar (drg, mempty) return (client intmapT intmap_var) else do let mapT = transactionMethods (contramapT nonceKey mapMethods) gen map_var <- atomically $ newTVar (drg, mempty) return (client mapT map_var) last8 :: ByteString -> Nonce8 last8 bs | let len = B.length bs , (len >= 8) = Nonce8 $ let bs' = B.drop (len - 8) bs Right w = S.runGet S.getWord64be bs' in w | otherwise = Nonce8 0 dropEnd8 :: ByteString -> ByteString dropEnd8 bs = B.take (B.length bs - 8) bs classify :: Message ByteString -> MessageClass String Method TransactionId classify (Message { msgType = typ , msgPayload = bs , msgNonce = nonce24 }) = go $ TransactionId (last8 bs) nonce24 where go = case typ of PingType -> IsQuery PingType GetNodesType -> IsQuery GetNodesType PongType -> IsResponse SendNodesType -> IsResponse encodePayload typ (TransactionId (Nonce8 tid) nonce) self dest b = Message { msgType = typ , msgOrigin = nodeId self , msgNonce = nonce , msgPayload = S.encode b <> S.runPut (S.putWord64be tid) } decodePayload :: S.Serialize a => Message ByteString -> Either String a decodePayload msg = S.decode $ dropEnd8 $ msgPayload msg handler typ f = Just $ MethodHandler decodePayload (encodePayload typ) f handlers :: Method -> Maybe (MethodHandler String TransactionId NodeInfo (Message ByteString)) handlers PingType = handler PingType pingH handlers GetNodesType = error "find_node" handlers _ = Nothing data Ping = Ping pingH :: NodeInfo -> Ping -> IO Ping pingH = error "pingH" intKey :: TransactionId -> Int intKey (TransactionId (Nonce8 w) _) = fromIntegral w nonceKey :: TransactionId -> Nonce8 nonceKey (TransactionId n _) = n -- randomBytesGenerate :: ByteArray byteArray => Int -> gen -> (byteArray, gen) -- gen :: forall gen. DRG gen => gen -> ((Nonce8, Nonce24), gen) gen :: SystemDRG -> (TransactionId, SystemDRG) gen g = let (bs, g') = randomBytesGenerate 24 g (ws, g'') = randomBytesGenerate 8 g' Right w = S.runGet S.getWord64be ws in ( TransactionId (Nonce8 w) (Nonce24 bs), g'' )