-- | -- Copyright : (c) Sam T. 2013 -- License : MIT -- Maintainer : pxqr.sta@gmail.com -- Stability : experimental -- Portability : portable -- -- This modules provides all necessary machinery to work with -- bitfields. Bitfields are used to keep track indices of complete -- pieces either peer have or client have. -- {-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE RecordWildCards #-} module Data.Bitfield ( Bitfield, PieceCount -- * Construction , haveAll, haveNone, have -- * Query , Data.Bitfield.null , haveCount, totalCount, completeness , findMin, findMax , Frequency, frequencies, rarest -- * Combine , union , intersection , difference -- * Serialization , getBitfield, putBitfield , bitfieldByteCount -- #ifdef TESTING , -- * Debug mkBitfield -- #endif ) where import Control.Monad import Control.Monad.ST import Data.Vector.Unboxed (Vector) import qualified Data.Vector.Unboxed as V import qualified Data.Vector.Unboxed.Mutable as VM import Data.IntervalSet (IntSet) import qualified Data.IntervalSet as S import Data.List (foldl') import Data.Monoid import Data.Ratio import Data.Serialize import Network.BitTorrent.PeerWire.Block -- | Used to represent max set bound. Min set bound is always set to -- zero. type PieceCount = Int -- TODO cache some operations -- | Bitfields are represented just as integer sets but with -- restriction: the each set should be within given interval (or -- subset of the specified interval). Size is used to specify -- interval, so bitfield of size 10 might contain only indices in -- interval [0..9]. -- data Bitfield = Bitfield { bfSize :: !PieceCount , bfSet :: !IntSet } deriving (Show, Read, Eq) -- Invariants: all elements of bfSet lie in [0..bfSize - 1]; instance Monoid Bitfield where {-# SPECIALIZE instance Monoid Bitfield #-} mempty = haveNone 0 mappend = union mconcat = unions {----------------------------------------------------------------------- Construction -----------------------------------------------------------------------} -- | The empty bitfield of the given size. haveNone :: PieceCount -> Bitfield haveNone s = Bitfield s S.empty -- | The full bitfield containing all piece indices for the given size. haveAll :: PieceCount -> Bitfield haveAll s = Bitfield s (S.interval 0 (s - 1)) -- | Insert the index in the set ignoring out of range indices. have :: PieceIx -> Bitfield -> Bitfield have ix Bitfield {..} | 0 <= ix && ix < bfSize = Bitfield bfSize (S.insert ix bfSet) | otherwise = Bitfield bfSize bfSet {----------------------------------------------------------------------- Query -----------------------------------------------------------------------} -- | Test if bitifield have no one index: peer do not have anything. null :: Bitfield -> Bool null Bitfield {..} = S.null bfSet -- | Count of peer have pieces. haveCount :: Bitfield -> PieceCount haveCount = S.size . bfSet -- | Total count of pieces and its indices. totalCount :: Bitfield -> PieceCount totalCount = bfSize -- | Ratio of /have/ piece count to the /total/ piece count. -- -- > forall bf. 0 <= completeness bf <= 1 -- completeness :: Bitfield -> Ratio PieceCount completeness b = haveCount b % totalCount b -- | Find first available piece index. findMin :: Bitfield -> Maybe PieceIx findMin Bitfield {..} | S.null bfSet = Nothing | otherwise = Just (S.findMin bfSet) -- | Find last available piece index. findMax :: Bitfield -> Maybe PieceIx findMax Bitfield {..} | S.null bfSet = Nothing | otherwise = Just (S.findMax bfSet) -- | Frequencies are needed in piece selection startegies which use -- availability quantity to find out the optimal next piece index to -- download. type Frequency = Int -- | How many times each piece index occur in the given bitfield set. frequencies :: [Bitfield] -> Vector Frequency frequencies [] = V.fromList [] frequencies xs = runST $ do v <- VM.new size VM.set v 0 forM_ xs $ \ Bitfield {..} -> do forM_ (S.toList bfSet) $ \ x -> do fr <- VM.read v x VM.write v x (succ fr) V.unsafeFreeze v where size = maximum (map bfSize xs) -- TODO it seems like this operation is veeery slow -- | Find least available piece index. If no piece available return 'Nothing'. rarest :: [Bitfield] -> Maybe PieceIx rarest xs | V.null freqMap = Nothing | otherwise = Just $ fst $ V.ifoldr' minIx (0, freqMap V.! 0) freqMap where freqMap = frequencies xs minIx :: PieceIx -> Frequency -> (PieceIx, Frequency) -> (PieceIx, Frequency) minIx ix fr acc@(_, fra) | fr < fra && fr > 0 = (ix, fr) | otherwise = acc {----------------------------------------------------------------------- Combine -----------------------------------------------------------------------} -- | Find indices at least one peer have. union :: Bitfield -> Bitfield -> Bitfield union a b = Bitfield { bfSize = bfSize a `max` bfSize b , bfSet = bfSet a `S.union` bfSet b } -- | Find indices both peers have. intersection :: Bitfield -> Bitfield -> Bitfield intersection a b = Bitfield { bfSize = bfSize a `min` bfSize b , bfSet = bfSet a `S.intersection` bfSet b } -- | Find indices which have first peer but do not have the second peer. difference :: Bitfield -> Bitfield -> Bitfield difference a b = Bitfield { bfSize = bfSize a -- FIXME is it reasonable? , bfSet = bfSet a `S.difference` bfSet b } -- | unions :: [Bitfield] -> Bitfield unions = foldl' union (haveNone 0) {----------------------------------------------------------------------- Serialization -----------------------------------------------------------------------} -- | getBitfield :: Int -> Get Bitfield getBitfield = error "getBitfield" -- | putBitfield :: Bitfield -> Put putBitfield = error "putBitfield" -- | bitfieldByteCount :: Bitfield -> Int bitfieldByteCount = error "bitfieldByteCount" {----------------------------------------------------------------------- Debug -----------------------------------------------------------------------} -- | For internal use only. mkBitfield :: PieceCount -> [PieceIx] -> Bitfield mkBitfield s ixs = Bitfield { bfSize = s , bfSet = S.splitGT (-1) $ S.splitLT s $ S.fromList ixs }