From 1925c123d7d8184a1d2ddc0a413e0fd2776e1083 Mon Sep 17 00:00:00 2001 From: Alberto Ruiz Date: Thu, 8 May 2014 08:48:12 +0200 Subject: empty hmatrix-base --- examples/minimize.hs | 50 -------------------------------------------------- 1 file changed, 50 deletions(-) delete mode 100644 examples/minimize.hs (limited to 'examples/minimize.hs') diff --git a/examples/minimize.hs b/examples/minimize.hs deleted file mode 100644 index 19b2cb3..0000000 --- a/examples/minimize.hs +++ /dev/null @@ -1,50 +0,0 @@ --- the multidimensional minimization example in the GSL manual -import Numeric.GSL -import Numeric.LinearAlgebra -import Graphics.Plot -import Text.Printf(printf) - --- the function to be minimized -f [x,y] = 10*(x-1)^2 + 20*(y-2)^2 + 30 - --- exact gradient -df [x,y] = [20*(x-1), 40*(y-2)] - --- a minimization algorithm which does not require the gradient -minimizeS f xi = minimize NMSimplex2 1E-2 100 (replicate (length xi) 1) f xi - --- Numerical estimation of the gradient -gradient f v = [partialDerivative k f v | k <- [0 .. length v -1]] - -partialDerivative n f v = fst (derivCentral 0.01 g (v!!n)) where - g x = f (concat [a,x:b]) - (a,_:b) = splitAt n v - -disp = putStrLn . format " " (printf "%.3f") - -allMethods :: (Enum a, Bounded a) => [a] -allMethods = [minBound .. maxBound] - -test method = do - print method - let (s,p) = minimize method 1E-2 30 [1,1] f [5,7] - print s - disp p - -testD method = do - print method - let (s,p) = minimizeD method 1E-3 30 1E-2 1E-4 f df [5,7] - print s - disp p - -testD' method = do - putStrLn $ show method ++ " with estimated gradient" - let (s,p) = minimizeD method 1E-3 30 1E-2 1E-4 f (gradient f) [5,7] - print s - disp p - -main = do - mapM_ test [NMSimplex, NMSimplex2] - mapM_ testD allMethods - testD' ConjugateFR - mplot $ drop 3 . toColumns . snd $ minimizeS f [5,7] -- cgit v1.2.3