From e8939f7f7f9654bcf0ab9a0cd3720279117e2e29 Mon Sep 17 00:00:00 2001 From: Alberto Ruiz Date: Tue, 10 Nov 2009 15:36:51 +0000 Subject: rankSVD, nullspaceSVD --- lib/Numeric/LinearAlgebra/Algorithms.hs | 63 ++++++++++++++++++++++++--------- 1 file changed, 46 insertions(+), 17 deletions(-) (limited to 'lib/Numeric') diff --git a/lib/Numeric/LinearAlgebra/Algorithms.hs b/lib/Numeric/LinearAlgebra/Algorithms.hs index e22246f..110619a 100644 --- a/lib/Numeric/LinearAlgebra/Algorithms.hs +++ b/lib/Numeric/LinearAlgebra/Algorithms.hs @@ -62,7 +62,9 @@ module Numeric.LinearAlgebra.Algorithms ( -- * Util haussholder, unpackQR, unpackHess, - pinvTol + pinvTol, + rankSVD, + nullspaceSVD ) where @@ -248,18 +250,28 @@ full svdFun m = (u, d ,v) where economy :: Element t => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Vector Double, Matrix t) economy svdFun m = (u', subVector 0 d s, v') where - (u,s,v) = svdFun m - sl@(g:_) = toList s - s' = fromList . filter (>tol) $ sl - t = 1 - tol = (fromIntegral (max r c) * g * t * eps) - r = rows m - c = cols m - d = dim s' + r@(u,s,v) = svdFun m + d = rankSVD (1*eps) m r `max` 1 u' = takeColumns d u v' = takeColumns d v +-- | Numeric rank of a matrix from the SVD decomposition. +rankSVD :: Element t + => Double -- ^ numeric zero (e.g. 1*'eps') + -> Matrix t -- ^ input matrix m + -> (Matrix t, Vector Double, Matrix t) -- ^ 'svd' of m + -> Int -- ^ rank of m +rankSVD teps m (_,s,_) = k where + sl@(g:_) = toList s + r = rows m + c = cols m + tol = fromIntegral (max r c) * g * teps + s' = fromList . filter (>tol) $ sl + k = if g > teps + then dim s' + else 0 + -- | The machine precision of a Double: @eps = 2.22044604925031e-16@ (the value used by GNU-Octave). eps :: Double eps = 2.22044604925031e-16 @@ -336,18 +348,36 @@ instance Normed (Matrix (Complex Double)) where ----------------------------------------------------------------------- -- | The nullspace of a matrix from its SVD decomposition. +nullspaceSVD :: Field t + => Either Double Int -- ^ Left \"numeric\" zero (eg. 1*'eps'), + -- or Right \"theoretical\" matrix rank. + -> Matrix t -- ^ input matrix m + -> (Matrix t, Vector Double, Matrix t) -- ^ 'svd' of m + -> [Vector t] -- ^ list of unitary vectors spanning the nullspace +nullspaceSVD hint a z@(_,_,v) = vs where + r = rows a + c = cols a + tol = case hint of + Left t -> t + _ -> eps + k = case hint of + Right t -> t + _ -> rankSVD tol a z + nsol = c - k + vs = drop k (toColumns v) + + +-- | The nullspace of a matrix. See also 'nullspaceSVD'. nullspacePrec :: Field t => Double -- ^ relative tolerance in 'eps' units -> Matrix t -- ^ input matrix -> [Vector t] -- ^ list of unitary vectors spanning the nullspace nullspacePrec t m = ns where - (_,s,v) = svd m - sl@(g:_) = toList s - tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) - rank' = length (filter (> g*tol) sl) - ns = drop rank' $ toRows $ ctrans v + r@(_,_,v) = svd m + k = rankSVD (t*eps) m r + ns = drop k $ toRows $ ctrans v --- | The nullspace of a matrix, assumed to be one-dimensional, with default tolerance (shortcut for @last . nullspacePrec 1@). +-- | The nullspace of a matrix, assumed to be one-dimensional, with default tolerance 1*'eps'. nullVector :: Field t => Matrix t -> Vector t nullVector = last . nullspacePrec 1 @@ -436,8 +466,7 @@ rcond m = last s / head s -- | Number of linearly independent rows or columns. rank :: Field t => Matrix t -> Int -rank m | pnorm PNorm1 m < eps = 0 - | otherwise = dim s where (_,s,_) = economy svd m +rank m = rankSVD eps m (svd m) {- expm' m = case diagonalize (complex m) of -- cgit v1.2.3