From b4873dbd201e0e887fb9cb5b5fe55774fa6fbe78 Mon Sep 17 00:00:00 2001 From: Alberto Ruiz Date: Sun, 12 Jul 2015 14:10:51 +0200 Subject: documentation --- packages/base/src/Internal/Algorithms.hs | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'packages/base/src/Internal/Algorithms.hs') diff --git a/packages/base/src/Internal/Algorithms.hs b/packages/base/src/Internal/Algorithms.hs index c8b2d3e..99c90aa 100644 --- a/packages/base/src/Internal/Algorithms.hs +++ b/packages/base/src/Internal/Algorithms.hs @@ -470,14 +470,14 @@ rq m = {-# SCC "rq" #-} (r,q) where -- | Hessenberg factorization. -- --- If @(p,h) = hess m@ then @m == p \<> h \<> ctrans p@, where p is unitary +-- If @(p,h) = hess m@ then @m == p \<> h \<> tr p@, where p is unitary -- and h is in upper Hessenberg form (it has zero entries below the first subdiagonal). hess :: Field t => Matrix t -> (Matrix t, Matrix t) hess = hess' -- | Schur factorization. -- --- If @(u,s) = schur m@ then @m == u \<> s \<> ctrans u@, where u is unitary +-- If @(u,s) = schur m@ then @m == u \<> s \<> tr u@, where u is unitary -- and s is a Shur matrix. A complex Schur matrix is upper triangular. A real Schur matrix is -- upper triangular in 2x2 blocks. -- @@ -497,7 +497,7 @@ cholSH = {-# SCC "cholSH" #-} cholSH' -- | Cholesky factorization of a positive definite hermitian or symmetric matrix. -- --- If @c = chol m@ then @c@ is upper triangular and @m == ctrans c \<> c@. +-- If @c = chol m@ then @c@ is upper triangular and @m == tr c \<> c@. chol :: Field t => Matrix t -> Matrix t chol m | exactHermitian m = cholSH m | otherwise = error "chol requires positive definite complex hermitian or real symmetric matrix" -- cgit v1.2.3