From 01e2dac904b37e5831617c28814cf5a65bb6f1e6 Mon Sep 17 00:00:00 2001 From: Alberto Ruiz Date: Fri, 5 Jun 2015 16:34:31 +0200 Subject: move modular --- .../base/src/Numeric/LinearAlgebra/Util/Modular.hs | 251 --------------------- 1 file changed, 251 deletions(-) delete mode 100644 packages/base/src/Numeric/LinearAlgebra/Util/Modular.hs (limited to 'packages/base/src/Numeric') diff --git a/packages/base/src/Numeric/LinearAlgebra/Util/Modular.hs b/packages/base/src/Numeric/LinearAlgebra/Util/Modular.hs deleted file mode 100644 index ea4a668..0000000 --- a/packages/base/src/Numeric/LinearAlgebra/Util/Modular.hs +++ /dev/null @@ -1,251 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE KindSignatures #-} -{-# LANGUAGE GeneralizedNewtypeDeriving #-} -{-# LANGUAGE MultiParamTypeClasses #-} -{-# LANGUAGE FunctionalDependencies #-} -{-# LANGUAGE FlexibleContexts #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE Rank2Types #-} -{-# LANGUAGE FlexibleInstances #-} -{-# LANGUAGE GADTs #-} -{-# LANGUAGE TypeFamilies #-} - - -{- | -Module : Numeric.LinearAlgebra.Util.Modular -Copyright : (c) Alberto Ruiz 2015 -License : BSD3 -Stability : experimental - -Proof of concept of statically checked modular arithmetic. - --} - -module Numeric.LinearAlgebra.Util.Modular( - Mod, F -) where - -import Data.Packed.Numeric -import Numeric.LinearAlgebra.Util(Indexable(..),gaussElim) -import GHC.TypeLits -import Data.Proxy(Proxy) -import Foreign.ForeignPtr(castForeignPtr) -import Data.Vector.Storable(unsafeToForeignPtr, unsafeFromForeignPtr) -import Foreign.Storable -import Data.Ratio -import Data.Packed.Internal.Matrix hiding (mat,size) -import Data.Packed.Internal.Numeric - - --- | Wrapper with a phantom integer for statically checked modular arithmetic. -newtype Mod (n :: Nat) t = Mod {unMod:: t} - deriving (Storable) - -instance KnownNat m => Enum (F m) - where - toEnum = l0 (\m x -> fromIntegral $ x `mod` (fromIntegral m)) - fromEnum = fromIntegral . unMod - -instance KnownNat m => Eq (F m) - where - a == b = (unMod a) == (unMod b) - -instance KnownNat m => Ord (F m) - where - compare a b = compare (unMod a) (unMod b) - -instance KnownNat m => Real (F m) - where - toRational x = toInteger x % 1 - -instance KnownNat m => Integral (F m) - where - toInteger = toInteger . unMod - quotRem a b = (Mod q, Mod r) - where - (q,r) = quotRem (unMod a) (unMod b) - --- | this instance is only valid for prime m -instance KnownNat m => Fractional (F m) - where - recip x - | x*r == 1 = r - | otherwise = error $ show x ++" does not have a multiplicative inverse mod "++show m' - where - r = x^(m'-2) - m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int - fromRational x = fromInteger (numerator x) / fromInteger (denominator x) - -l2 :: forall m a b c. (KnownNat m) => (Int -> a -> b -> c) -> Mod m a -> Mod m b -> Mod m c -l2 f (Mod u) (Mod v) = Mod (f m' u v) - where - m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int - -l1 :: forall m a b . (KnownNat m) => (Int -> a -> b) -> Mod m a -> Mod m b -l1 f (Mod u) = Mod (f m' u) - where - m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int - -l0 :: forall m a b . (KnownNat m) => (Int -> a -> b) -> a -> Mod m b -l0 f u = Mod (f m' u) - where - m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int - - -instance Show (F n) - where - show = show . unMod - -instance forall n . KnownNat n => Num (F n) - where - (+) = l2 (\m a b -> (a + b) `mod` (fromIntegral m)) - (*) = l2 (\m a b -> (a * b) `mod` (fromIntegral m)) - (-) = l2 (\m a b -> (a - b) `mod` (fromIntegral m)) - abs = l1 (const abs) - signum = l1 (const signum) - fromInteger = l0 (\m x -> fromInteger x `mod` (fromIntegral m)) - - --- | Integer modulo n -type F n = Mod n I - -type V n = Vector (F n) -type M n = Matrix (F n) - - -instance Element (F n) - where - transdata n v m = i2f (transdata n (f2i v) m) - constantD x n = i2f (constantD (unMod x) n) - extractR m mi is mj js = i2fM (extractR (f2iM m) mi is mj js) - sortI = sortI . f2i - sortV = i2f . sortV . f2i - compareV u v = compareV (f2i u) (f2i v) - selectV c l e g = i2f (selectV c (f2i l) (f2i e) (f2i g)) - remapM i j m = i2fM (remap i j (f2iM m)) - -instance forall m . KnownNat m => Container Vector (F m) - where - conj' = id - size' = dim - scale' s x = fromInt (scale (unMod s) (toInt x)) - addConstant c x = fromInt (addConstant (unMod c) (toInt x)) - add a b = fromInt (add (toInt a) (toInt b)) - sub a b = fromInt (sub (toInt a) (toInt b)) - mul a b = fromInt (mul (toInt a) (toInt b)) - equal u v = equal (toInt u) (toInt v) - scalar' x = fromList [x] - konst' x = i2f . konst (unMod x) - build' n f = build n (fromIntegral . f) - cmap' = cmap - atIndex' x k = fromIntegral (atIndex (toInt x) k) - minIndex' = minIndex . toInt - maxIndex' = maxIndex . toInt - minElement' = Mod . minElement . toInt - maxElement' = Mod . maxElement . toInt - sumElements' = fromIntegral . sumElements . toInt - prodElements' = fromIntegral . sumElements . toInt - step' = i2f . step . toInt - find' = findV - assoc' = assocV - accum' = accumV - cond' x y l e g = cselect (ccompare x y) l e g - ccompare' a b = ccompare (toInt a) (toInt b) - cselect' c l e g = i2f $ cselect c (toInt l) (toInt e) (toInt g) - scaleRecip s x = scale' s (cmap recip x) - divide x y = mul x (cmap recip y) - arctan2' = undefined - cmod' m = fromInt' . cmod' (unMod m) . toInt' - fromInt' v = i2f $ cmod' (fromIntegral m') (fromInt' v) - where - m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int - toInt' = f2i - - -instance Indexable (Vector (F m)) (F m) - where - (!) = (@>) - - -type instance RealOf (F n) = I - - -instance KnownNat m => Product (F m) where - norm2 = undefined - absSum = undefined - norm1 = undefined - normInf = undefined - multiply = lift2 multiply - - -instance KnownNat m => Numeric (F m) - -i2f :: Vector I -> Vector (F n) -i2f v = unsafeFromForeignPtr (castForeignPtr fp) (i) (n) - where (fp,i,n) = unsafeToForeignPtr v - -f2i :: Vector (F n) -> Vector I -f2i v = unsafeFromForeignPtr (castForeignPtr fp) (i) (n) - where (fp,i,n) = unsafeToForeignPtr v - -f2iM :: Matrix (F n) -> Matrix I -f2iM = liftMatrix f2i - -i2fM :: Matrix I -> Matrix (F n) -i2fM = liftMatrix i2f - - -lift1 f a = fromInt (f (toInt a)) -lift2 f a b = fromInt (f (toInt a) (toInt b)) - -instance forall m . KnownNat m => Num (V m) - where - (+) = lift2 (+) - (*) = lift2 (*) - (-) = lift2 (-) - abs = lift1 abs - signum = lift1 signum - negate = lift1 negate - fromInteger x = fromInt (fromInteger x) - - --------------------------------------------------------------------------------- - -instance (KnownNat m) => Testable (M m) - where - checkT _ = test - -test = (ok, info) - where - v = fromList [3,-5,75] :: V 11 - m = (3><3) [1..] :: M 11 - - a = (3><3) [1,2 , 3 - ,4,5 , 6 - ,0,10,-3] :: Matrix I - - b = (3><2) [0..] :: Matrix I - - am = fromInt a :: Matrix (F 13) - bm = fromInt b :: Matrix (F 13) - ad = fromInt a :: Matrix Double - bd = fromInt b :: Matrix Double - - info = do - print v - print m - print (tr m) - print $ v+v - print $ m+m - print $ m <> m - print $ m #> v - - print $ am <> gaussElim am bm - bm - print $ ad <> gaussElim ad bd - bd - - ok = and - [ toInt (m #> v) == cmod 11 (toInt m #> toInt v ) - , am <> gaussElim am bm == bm - ] - - -- cgit v1.2.3