{-# LANGUAGE BangPatterns #-} -- $ ghc --make -O2 benchmarks.hs import Numeric.LinearAlgebra import System.Time import System.CPUTime import Text.Printf import Data.List(foldl1') time act = do t0 <- getCPUTime act t1 <- getCPUTime printf "%.3f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO () -------------------------------------------------------------------------------- main = sequence_ [bench1,bench2,bench4, bench5 1000000 3, bench5 100000 50] w :: Vector Double w = constant 1 5000000 w2 = 1 * w v = flatten $ ident 500 :: Vector Double bench1 = do time $ print$ vectorMax (w+w2) -- evaluate it putStrLn "Sum of a vector with 5M doubles:" print $ vectorMax v -- evaluate it -- time $ printf " BLAS: %.2f: " $ sumVB w time $ printf " Haskell: %.2f: " $ sumVH w time $ printf " BLAS: %.2f: " $ w <.> w2 time $ printf " Haskell: %.2f: " $ sumVH w time $ printf " innerH: %.2f: " $ innerH w w2 time $ printf "foldVector: %.2f: " $ sumVector w let getPos k s = if k `mod` 500 < 200 && w@>k > 0 then k:s else s putStrLn "foldLoop for element selection:" time $ print $ (`divMod` 500) $ maximum $ foldLoop getPos [] (dim w) putStrLn "constant 5M:" time $ print $ constant (1::Double) 5000001 @> 7 time $ print $ constant i 5000001 @> 7 time $ print $ conj (constant i 5000001) @> 7 sumVH v = go (d - 1) 0 where d = dim v go :: Int -> Double -> Double go 0 s = s + (v @> 0) go !j !s = go (j - 1) (s + (v @> j)) innerH u v = go (d - 1) 0 where d = dim u go :: Int -> Double -> Double go 0 s = s + (u @> 0) * (v @> 0) go !j !s = go (j - 1) (s + (u @> j) * (v @> j)) -- sumVector = foldVectorG (\k v s -> v k + s) 0.0 sumVector = foldVector (+) 0.0 -------------------------------------------------------------------------------- bench2 = do putStrLn "-------------------------------------------------------" putStrLn "Multiplication of 1M different 3x3 matrices:" -- putStrLn "from [[]]" -- time $ print $ manymult (10^6) rot' -- putStrLn "from (3><3) []" time $ print $ manymult (10^6) rot print $ cos (10^6/2) rot' :: Double -> Matrix Double rot' a = matrix [[ c,0,s], [ 0,1,0], [-s,0,c]] where c = cos a s = sin a matrix = fromLists rot :: Double -> Matrix Double rot a = (3><3) [ c,0,s , 0,1,0 ,-s,0,c ] where c = cos a s = sin a manymult n r = foldl1' (<>) (map r angles) where angles = toList $ linspace n (0,1) -- angles = map (k*) [0..n'] -- n' = fromIntegral n - 1 -- k = recip n' -------------------------------------------------------------------------------- bench4 = do putStrLn "-------------------------------------------------------" putStrLn "1000x1000 inverse" let a = ident 1000 :: Matrix Double let b = 2*a print $ vectorMax $ flatten (a+b) -- evaluate it time $ print $ vectorMax $ flatten $ linearSolve a b -------------------------------------------------------------------------------- op1 a b = a <> trans b op2 a b = a + trans b timep = time . print . vectorMax . flatten bench5 n d = do putStrLn "-------------------------------------------------------" putStrLn "transpose in add" let ms = replicate n ((ident d :: Matrix Double)) timep $ foldl1' (+) ms timep $ foldl1' op2 ms putStrLn "-------------------------------------------------------" putStrLn "transpose in multiply" timep $ foldl1' (<>) ms timep $ foldl1' op1 ms