-- Principal component analysis import LinearAlgebra import System.Directory(doesFileExist) import System(system) import Control.Monad(when) type Vec = Vector Double type Mat = Matrix Double sumColumns m = constant 1 (rows m) <> m -- Vec with the mean value of the columns of a Mat mean x = sumColumns x / fromIntegral (rows x) -- covariance Mat of a list of observations as rows of a Mat cov x = (trans xc <> xc) / fromIntegral (rows x -1) where xc = center x center m = m - constant 1 (rows m) `outer` mean m -- creates the compression and decompression functions from the desired number of components pca :: Int -> Mat -> (Vec -> Vec , Vec -> Vec) pca n dataSet = (encode,decode) where encode x = vp <> (x - m) decode x = x <> vp + m m = mean dataSet c = cov dataSet (_,v) = eigS c vp = takeRows n (trans v) main = do ok <- doesFileExist ("mnist.txt") when (not ok) $ do putStrLn "\nTrying to download test datafile..." system("wget -nv http://dis.um.es/~alberto/material/sp/mnist.txt.gz") system("gunzip mnist.txt.gz") return () m <- fromFile "mnist.txt" (5000,785) let xs = takeColumns (cols m -1) m -- the last column is the digit type (class label) let x = toRows xs !! 4 -- an arbitrary test Vec let (pe,pd) = pca 10 xs let y = pe x print y -- compressed version print $ norm (x - pd y) / norm x --reconstruction quality