{-# OPTIONS_GHC -fglasgow-exts #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Packed.Internal.Matrix -- Copyright : (c) Alberto Ruiz 2007 -- License : GPL-style -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- Portability : portable (uses FFI) -- -- Fundamental types -- ----------------------------------------------------------------------------- module Data.Packed.Internal.Matrix where import Data.Packed.Internal.Common import Data.Packed.Internal.Vector import Foreign hiding (xor) import Complex import Control.Monad(when) import Data.List(transpose,intersperse) import Data.Typeable import Data.Maybe(fromJust) data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq) data Matrix t = M { rows :: Int , cols :: Int , dat :: Vector t , tdat :: Vector t , isTrans :: Bool , order :: MatrixOrder } deriving Typeable fortran m = order m == ColumnMajor cdat m = if fortran m `xor` isTrans m then tdat m else dat m fdat m = if fortran m `xor` isTrans m then dat m else tdat m trans :: Matrix t -> Matrix t trans m = m { rows = cols m , cols = rows m , isTrans = not (isTrans m) } type Mt t s = Int -> Int -> Ptr t -> s -- not yet admitted by my haddock version -- infixr 6 ::> -- type t ::> s = Mt t s mat d m f = f (rows m) (cols m) (ptr (d m)) toLists :: (Storable t) => Matrix t -> [[t]] toLists m = partit (cols m) . toList . cdat $ m instance (Show a, Storable a) => (Show (Matrix a)) where show m = (sizes++) . dsp . map (map show) . toLists $ m where sizes = "("++show (rows m)++"><"++show (cols m)++")\n" dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp where mt = transpose as longs = map (maximum . map length) mt mtp = zipWith (\a b -> map (pad a) b) longs mt pad n str = replicate (n - length str) ' ' ++ str unwords' = concat . intersperse ", " matrixFromVector RowMajor c v = M { rows = r , cols = c , dat = v , tdat = transdata c v r , order = RowMajor , isTrans = False } where r = dim v `div` c -- TODO check mod=0 matrixFromVector ColumnMajor c v = M { rows = r , cols = c , dat = v , tdat = transdata r v c , order = ColumnMajor , isTrans = False } where r = dim v `div` c -- TODO check mod=0 createMatrix order r c = do p <- createVector (r*c) return (matrixFromVector order c p) {- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns. @\> reshape 4 ('fromList' [1..12]) (3><4) [ 1.0, 2.0, 3.0, 4.0 , 5.0, 6.0, 7.0, 8.0 , 9.0, 10.0, 11.0, 12.0 ]@ -} reshape :: (Field t) => Int -> Vector t -> Matrix t reshape c v = matrixFromVector RowMajor c v singleton x = reshape 1 (fromList [x]) transdataG :: Storable a => Int -> Vector a -> Int -> Vector a transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d transdataR :: Int -> Vector Double -> Int -> Vector Double transdataR = transdataAux ctransR transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double) transdataC = transdataAux ctransC transdataAux fun c1 d c2 = if noneed then d else unsafePerformIO $ do v <- createVector (dim d) fun r1 c1 (ptr d) r2 c2 (ptr v) // check "transdataAux" [d] --putStrLn "---> transdataAux" return v where r1 = dim d `div` c1 r2 = dim d `div` c2 noneed = r1 == 1 || c1 == 1 foreign import ccall safe "aux.h transR" ctransR :: TMM -- Double ::> Double ::> IO Int foreign import ccall safe "aux.h transC" ctransC :: TCMCM -- Complex Double ::> Complex Double ::> IO Int transdata :: Field a => Int -> Vector a -> Int -> Vector a transdata c1 d c2 | isReal baseOf d = scast $ transdataR c1 (scast d) c2 | isComp baseOf d = scast $ transdataC c1 (scast d) c2 | otherwise = transdataG c1 d c2 --transdata :: Storable a => Int -> Vector a -> Int -> Vector a --transdata = transdataG --{-# RULES "transdataR" transdata=transdataR #-} --{-# RULES "transdataC" transdata=transdataC #-} ----------------------------------------------------------------- liftMatrix :: (Field a, Field b) => (Vector a -> Vector b) -> Matrix a -> Matrix b liftMatrix f m = reshape (cols m) (f (cdat m)) liftMatrix2 :: (Field t) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t liftMatrix2 f m1 m2 | compat m1 m2 = reshape (cols m1) (f (cdat m1) (cdat m2)) | otherwise = error "nonconformant matrices in liftMatrix2" ------------------------------------------------------------------ compat :: Matrix a -> Matrix b -> Bool compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2 dotL a b = sum (zipWith (*) a b) multiplyL a b | ok = [[dotL x y | y <- transpose b] | x <- a] | otherwise = error "inconsistent dimensions in contraction " where ok = case common length a of Nothing -> False Just c -> c == length b transL m = matrixFromVector RowMajor (rows m) $ transdataG (cols m) (cdat m) (rows m) multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b) ------------------------------------------------------------------ gmatC m f | fortran m = if (isTrans m) then f 0 (rows m) (cols m) (ptr (dat m)) else f 1 (cols m) (rows m) (ptr (dat m)) | otherwise = if isTrans m then f 1 (cols m) (rows m) (ptr (dat m)) else f 0 (rows m) (cols m) (ptr (dat m)) multiplyAux order fun a b = unsafePerformIO $ do when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++ show (rows a,cols a) ++ " x " ++ show (rows b, cols b) r <- createMatrix order (rows a) (cols b) fun // gmatC a // gmatC b // mat dat r // check "multiplyAux" [dat a, dat b] return r foreign import ccall safe "aux.h multiplyR" cmultiplyR :: Int -> Int -> Int -> Ptr Double -> Int -> Int -> Int -> Ptr Double -> Int -> Int -> Ptr Double -> IO Int foreign import ccall safe "aux.h multiplyC" cmultiplyC :: Int -> Int -> Int -> Ptr (Complex Double) -> Int -> Int -> Int -> Ptr (Complex Double) -> Int -> Int -> Ptr (Complex Double) -> IO Int multiply :: (Num a, Field a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a multiply RowMajor a b = multiplyD RowMajor a b multiply ColumnMajor a b = m {rows = cols m, cols = rows m, order = ColumnMajor} where m = multiplyD RowMajor (trans b) (trans a) multiplyD order a b | isReal (baseOf.dat) a = scast $ multiplyAux order cmultiplyR (scast a) (scast b) | isComp (baseOf.dat) a = scast $ multiplyAux order cmultiplyC (scast a) (scast b) | otherwise = multiplyG a b ---------------------------------------------------------------------- outer' u v = dat (outer u v) {- | Outer product of two vectors. @\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3] (3><3) [ 5.0, 2.0, 3.0 , 10.0, 4.0, 6.0 , 15.0, 6.0, 9.0 ]@ -} outer :: (Num t, Field t) => Vector t -> Vector t -> Matrix t outer u v = multiply RowMajor r c where r = matrixFromVector RowMajor 1 u c = matrixFromVector RowMajor (dim v) v dot :: (Field t, Num t) => Vector t -> Vector t -> t dot u v = dat (multiply RowMajor r c) `at` 0 where r = matrixFromVector RowMajor (dim u) u c = matrixFromVector RowMajor 1 v ---------------------------------------------------------------------- -- | extraction of a submatrix of a real matrix subMatrixR :: (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix Double -> Matrix Double subMatrixR (r0,c0) (rt,ct) x = unsafePerformIO $ do r <- createMatrix RowMajor rt ct c_submatrixR r0 (r0+rt-1) c0 (c0+ct-1) // mat cdat x // mat cdat r // check "subMatrixR" [dat r] return r foreign import ccall "aux.h submatrixR" c_submatrixR :: Int -> Int -> Int -> Int -> TMM -- | extraction of a submatrix of a complex matrix subMatrixC :: (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix (Complex Double) -> Matrix (Complex Double) subMatrixC (r0,c0) (rt,ct) x = reshape ct . asComplex . cdat . subMatrixR (r0,2*c0) (rt,2*ct) . reshape (2*cols x) . asReal . cdat $ x subMatrix :: (Field a) => (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix a -> Matrix a subMatrix st sz m | isReal (baseOf.dat) m = scast $ subMatrixR st sz (scast m) | isComp (baseOf.dat) m = scast $ subMatrixC st sz (scast m) | otherwise = subMatrixG st sz m subMatrixG (r0,c0) (rt,ct) x = reshape ct $ fromList $ concat $ map (subList c0 ct) (subList r0 rt (toLists x)) where subList s n = take n . drop s --------------------------------------------------------------------- diagAux fun msg (v@V {dim = n}) = unsafePerformIO $ do m <- createMatrix RowMajor n n fun // vec v // mat dat m // check msg [dat m] return m {tdat = dat m} -- | diagonal matrix from a real vector diagR :: Vector Double -> Matrix Double diagR = diagAux c_diagR "diagR" foreign import ccall "aux.h diagR" c_diagR :: TVM -- | diagonal matrix from a real vector diagC :: Vector (Complex Double) -> Matrix (Complex Double) diagC = diagAux c_diagC "diagC" foreign import ccall "aux.h diagC" c_diagC :: TCVCM -- | diagonal matrix from a vector diag :: (Num a, Field a) => Vector a -> Matrix a diag v | isReal (baseOf) v = scast $ diagR (scast v) | isComp (baseOf) v = scast $ diagC (scast v) | otherwise = diagG v diagG v = reshape c $ fromList $ [ l!!(i-1) * delta k i | k <- [1..c], i <- [1..c]] where c = dim v l = toList v delta i j | i==j = 1 | otherwise = 0 -- | creates a Matrix from a list of vectors fromRows :: Field t => [Vector t] -> Matrix t fromRows vs = case common dim vs of Nothing -> error "fromRows applied to [] or to vectors with different sizes" Just c -> reshape c (join vs) -- | extracts the rows of a matrix as a list of vectors toRows :: Storable t => Matrix t -> [Vector t] toRows m = toRows' 0 where v = cdat m r = rows m c = cols m toRows' k | k == r*c = [] | otherwise = subVector k c v : toRows' (k+c) -- | Creates a matrix from a list of vectors, as columns fromColumns :: Field t => [Vector t] -> Matrix t fromColumns m = trans . fromRows $ m -- | Creates a list of vectors from the columns of a matrix toColumns :: Field t => Matrix t -> [Vector t] toColumns m = toRows . trans $ m -- | Reads a matrix position. (@@>) :: Field t => Matrix t -> (Int,Int) -> t infixl 9 @@> m@M {rows = r, cols = c} @@> (i,j) | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range" | otherwise = cdat m `at` (i*c+j)