{-# LANGUAGE ForeignFunctionInterface #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE BangPatterns #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Packed.Internal.Matrix -- Copyright : (c) Alberto Ruiz 2007 -- License : GPL-style -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- Portability : portable (uses FFI) -- -- Internal matrix representation -- ----------------------------------------------------------------------------- -- #hide module Data.Packed.Internal.Matrix( Matrix(..), rows, cols, cdat, fdat, MatrixOrder(..), orderOf, createMatrix, mat, cmat, fmat, toLists, flatten, reshape, Element(..), trans, fromRows, toRows, fromColumns, toColumns, matrixFromVector, subMatrix, liftMatrix, liftMatrix2, (@@>), atM', saveMatrix, singleton, size, shSize, conformVs, conformMs, conformVTo, conformMTo ) where import Data.Packed.Internal.Common import Data.Packed.Internal.Signatures import Data.Packed.Internal.Vector import Foreign.Marshal.Alloc(alloca, free) import Foreign.Marshal.Array(newArray) import Foreign.Ptr(Ptr, castPtr) import Foreign.Storable(Storable, peekElemOff, pokeElemOff, poke, sizeOf) import Data.Complex(Complex) import Foreign.C.Types import Foreign.C.String(newCString) import System.IO.Unsafe(unsafePerformIO) import Control.DeepSeq ----------------------------------------------------------------- {- Design considerations for the Matrix Type ----------------------------------------- - we must easily handle both row major and column major order, for bindings to LAPACK and GSL/C - we'd like to simplify redundant matrix transposes: - Some of them arise from the order requirements of some functions - some functions (matrix product) admit transposed arguments - maybe we don't really need this kind of simplification: - more complex code - some computational overhead - only appreciable gain in code with a lot of redundant transpositions and cheap matrix computations - we could carry both the matrix and its (lazily computed) transpose. This may save some transpositions, but it is necessary to keep track of the data which is actually computed to be used by functions like the matrix product which admit both orders. - but if we need the transposed data and it is not in the structure, we must make sure that we touch the same foreignptr that is used in the computation. - a reasonable solution is using two constructors for a matrix. Transposition just "flips" the constructor. Actual data transposition is not done if followed by a matrix product or another transpose. -} data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq) transOrder RowMajor = ColumnMajor transOrder ColumnMajor = RowMajor {- | Matrix representation suitable for GSL and LAPACK computations. The elements are stored in a continuous memory array. -} data Matrix t = Matrix { irows :: {-# UNPACK #-} !Int , icols :: {-# UNPACK #-} !Int , xdat :: {-# UNPACK #-} !(Vector t) , order :: !MatrixOrder } -- RowMajor: preferred by C, fdat may require a transposition -- ColumnMajor: preferred by LAPACK, cdat may require a transposition cdat = xdat fdat = xdat rows :: Matrix t -> Int rows = irows cols :: Matrix t -> Int cols = icols orderOf :: Matrix t -> MatrixOrder orderOf = order -- | Matrix transpose. trans :: Matrix t -> Matrix t trans Matrix {irows = r, icols = c, xdat = d, order = o } = Matrix { irows = c, icols = r, xdat = d, order = transOrder o} cmat :: (Element t) => Matrix t -> Matrix t cmat m@Matrix{order = RowMajor} = m cmat Matrix {irows = r, icols = c, xdat = d, order = ColumnMajor } = Matrix { irows = r, icols = c, xdat = transdata r d c, order = RowMajor} fmat :: (Element t) => Matrix t -> Matrix t fmat m@Matrix{order = ColumnMajor} = m fmat Matrix {irows = r, icols = c, xdat = d, order = RowMajor } = Matrix { irows = r, icols = c, xdat = transdata c d r, order = ColumnMajor} -- C-Haskell matrix adapter -- mat :: Adapt (CInt -> CInt -> Ptr t -> r) (Matrix t) r mat :: (Storable t) => Matrix t -> (((CInt -> CInt -> Ptr t -> t1) -> t1) -> IO b) -> IO b mat a f = unsafeWith (xdat a) $ \p -> do let m g = do g (fi (rows a)) (fi (cols a)) p f m {- | Creates a vector by concatenation of rows. If the matrix is ColumnMajor, this operation requires a transpose. >>> flatten (ident 3) fromList [1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0] -} flatten :: Element t => Matrix t -> Vector t flatten = xdat . cmat {- type Mt t s = Int -> Int -> Ptr t -> s infixr 6 ::> type t ::> s = Mt t s -} -- | the inverse of 'Data.Packed.Matrix.fromLists' toLists :: (Element t) => Matrix t -> [[t]] toLists m = splitEvery (cols m) . toList . flatten $ m -- | Create a matrix from a list of vectors. -- All vectors must have the same dimension, -- or dimension 1, which is are automatically expanded. fromRows :: Element t => [Vector t] -> Matrix t fromRows vs = case compatdim (map dim vs) of Nothing -> error "fromRows applied to [] or to vectors with different sizes" Just c -> reshape c . vjoin . map (adapt c) $ vs where adapt c v | dim v == c = v | otherwise = constantD (v@>0) c -- | extracts the rows of a matrix as a list of vectors toRows :: Element t => Matrix t -> [Vector t] toRows m = toRows' 0 where v = flatten m r = rows m c = cols m toRows' k | k == r*c = [] | otherwise = subVector k c v : toRows' (k+c) -- | Creates a matrix from a list of vectors, as columns fromColumns :: Element t => [Vector t] -> Matrix t fromColumns m = trans . fromRows $ m -- | Creates a list of vectors from the columns of a matrix toColumns :: Element t => Matrix t -> [Vector t] toColumns m = toRows . trans $ m -- | Reads a matrix position. (@@>) :: Storable t => Matrix t -> (Int,Int) -> t infixl 9 @@> m@Matrix {irows = r, icols = c} @@> (i,j) | safe = if i<0 || i>=r || j<0 || j>=c then error "matrix indexing out of range" else atM' m i j | otherwise = atM' m i j {-# INLINE (@@>) #-} -- Unsafe matrix access without range checking atM' Matrix {icols = c, xdat = v, order = RowMajor} i j = v `at'` (i*c+j) atM' Matrix {irows = r, xdat = v, order = ColumnMajor} i j = v `at'` (j*r+i) {-# INLINE atM' #-} ------------------------------------------------------------------ matrixFromVector o r c v | r * c == dim v = m | otherwise = error $ "matrixFromVector " ++ shSize m ++ " <- " ++ show (dim v) where m = Matrix { irows = r, icols = c, xdat = v, order = o } -- allocates memory for a new matrix createMatrix :: (Storable a) => MatrixOrder -> Int -> Int -> IO (Matrix a) createMatrix ord r c = do p <- createVector (r*c) return (matrixFromVector ord r c p) {- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns. (GNU-Octave groups by columns. To do it you can define @reshapeF r = trans . reshape r@ where r is the desired number of rows.) >>> reshape 4 (fromList [1..12]) (3><4) [ 1.0, 2.0, 3.0, 4.0 , 5.0, 6.0, 7.0, 8.0 , 9.0, 10.0, 11.0, 12.0 ] -} reshape :: Storable t => Int -> Vector t -> Matrix t reshape 0 v = matrixFromVector RowMajor 0 0 v reshape c v = matrixFromVector RowMajor (dim v `div` c) c v singleton x = reshape 1 (fromList [x]) -- | application of a vector function on the flattened matrix elements liftMatrix :: (Storable a, Storable b) => (Vector a -> Vector b) -> Matrix a -> Matrix b liftMatrix f Matrix { irows = r, icols = c, xdat = d, order = o } = matrixFromVector o r c (f d) -- | application of a vector function on the flattened matrices elements liftMatrix2 :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t liftMatrix2 f m1 m2 | not (compat m1 m2) = error "nonconformant matrices in liftMatrix2" | otherwise = case orderOf m1 of RowMajor -> matrixFromVector RowMajor (rows m1) (cols m1) (f (xdat m1) (flatten m2)) ColumnMajor -> matrixFromVector ColumnMajor (rows m1) (cols m1) (f (xdat m1) ((xdat.fmat) m2)) compat :: Matrix a -> Matrix b -> Bool compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2 ------------------------------------------------------------------ {- | Supported matrix elements. This class provides optimized internal operations for selected element types. It provides unoptimised defaults for any 'Storable' type, so you can create instances simply as: @instance Element Foo@. -} class (Storable a) => Element a where subMatrixD :: (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix a -> Matrix a subMatrixD = subMatrix' transdata :: Int -> Vector a -> Int -> Vector a transdata = transdataP -- transdata' constantD :: a -> Int -> Vector a constantD = constantP -- constant' instance Element Float where transdata = transdataAux ctransF constantD = constantAux cconstantF instance Element Double where transdata = transdataAux ctransR constantD = constantAux cconstantR instance Element (Complex Float) where transdata = transdataAux ctransQ constantD = constantAux cconstantQ instance Element (Complex Double) where transdata = transdataAux ctransC constantD = constantAux cconstantC ------------------------------------------------------------------- transdata' :: Storable a => Int -> Vector a -> Int -> Vector a transdata' c1 v c2 = if noneed then v else unsafePerformIO $ do w <- createVector (r2*c2) unsafeWith v $ \p -> unsafeWith w $ \q -> do let go (-1) _ = return () go !i (-1) = go (i-1) (c1-1) go !i !j = do x <- peekElemOff p (i*c1+j) pokeElemOff q (j*c2+i) x go i (j-1) go (r1-1) (c1-1) return w where r1 = dim v `div` c1 r2 = dim v `div` c2 noneed = dim v == 0 || r1 == 1 || c1 == 1 -- {-# SPECIALIZE transdata' :: Int -> Vector Double -> Int -> Vector Double #-} -- {-# SPECIALIZE transdata' :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double) #-} -- I don't know how to specialize... -- The above pragmas only seem to work on top level defs -- Fortunately everything seems to work using the above class -- C versions, still a little faster: transdataAux fun c1 d c2 = if noneed then d else unsafePerformIO $ do v <- createVector (dim d) unsafeWith d $ \pd -> unsafeWith v $ \pv -> fun (fi r1) (fi c1) pd (fi r2) (fi c2) pv // check "transdataAux" return v where r1 = dim d `div` c1 r2 = dim d `div` c2 noneed = dim d == 0 || r1 == 1 || c1 == 1 transdataP :: Storable a => Int -> Vector a -> Int -> Vector a transdataP c1 d c2 = if noneed then d else unsafePerformIO $ do v <- createVector (dim d) unsafeWith d $ \pd -> unsafeWith v $ \pv -> ctransP (fi r1) (fi c1) (castPtr pd) (fi sz) (fi r2) (fi c2) (castPtr pv) (fi sz) // check "transdataP" return v where r1 = dim d `div` c1 r2 = dim d `div` c2 sz = sizeOf (d @> 0) noneed = dim d == 0 || r1 == 1 || c1 == 1 foreign import ccall unsafe "transF" ctransF :: TFMFM foreign import ccall unsafe "transR" ctransR :: TMM foreign import ccall unsafe "transQ" ctransQ :: TQMQM foreign import ccall unsafe "transC" ctransC :: TCMCM foreign import ccall unsafe "transP" ctransP :: CInt -> CInt -> Ptr () -> CInt -> CInt -> CInt -> Ptr () -> CInt -> IO CInt ---------------------------------------------------------------------- constant' v n = unsafePerformIO $ do w <- createVector n unsafeWith w $ \p -> do let go (-1) = return () go !k = pokeElemOff p k v >> go (k-1) go (n-1) return w -- C versions constantAux fun x n = unsafePerformIO $ do v <- createVector n px <- newArray [x] app1 (fun px) vec v "constantAux" free px return v constantF :: Float -> Int -> Vector Float constantF = constantAux cconstantF foreign import ccall unsafe "constantF" cconstantF :: Ptr Float -> TF constantR :: Double -> Int -> Vector Double constantR = constantAux cconstantR foreign import ccall unsafe "constantR" cconstantR :: Ptr Double -> TV constantQ :: Complex Float -> Int -> Vector (Complex Float) constantQ = constantAux cconstantQ foreign import ccall unsafe "constantQ" cconstantQ :: Ptr (Complex Float) -> TQV constantC :: Complex Double -> Int -> Vector (Complex Double) constantC = constantAux cconstantC foreign import ccall unsafe "constantC" cconstantC :: Ptr (Complex Double) -> TCV constantP :: Storable a => a -> Int -> Vector a constantP a n = unsafePerformIO $ do let sz = sizeOf a v <- createVector n unsafeWith v $ \p -> do alloca $ \k -> do poke k a cconstantP (castPtr k) (fi n) (castPtr p) (fi sz) // check "constantP" return v foreign import ccall unsafe "constantP" cconstantP :: Ptr () -> CInt -> Ptr () -> CInt -> IO CInt ---------------------------------------------------------------------- -- | Extracts a submatrix from a matrix. subMatrix :: Element a => (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix a -- ^ input matrix -> Matrix a -- ^ result subMatrix (r0,c0) (rt,ct) m | 0 <= r0 && 0 < rt && r0+rt <= (rows m) && 0 <= c0 && 0 < ct && c0+ct <= (cols m) = subMatrixD (r0,c0) (rt,ct) m | otherwise = error $ "wrong subMatrix "++ show ((r0,c0),(rt,ct))++" of "++show(rows m)++"x"++ show (cols m) subMatrix'' (r0,c0) (rt,ct) c v = unsafePerformIO $ do w <- createVector (rt*ct) unsafeWith v $ \p -> unsafeWith w $ \q -> do let go (-1) _ = return () go !i (-1) = go (i-1) (ct-1) go !i !j = do x <- peekElemOff p ((i+r0)*c+j+c0) pokeElemOff q (i*ct+j) x go i (j-1) go (rt-1) (ct-1) return w subMatrix' (r0,c0) (rt,ct) (Matrix { icols = c, xdat = v, order = RowMajor}) = Matrix rt ct (subMatrix'' (r0,c0) (rt,ct) c v) RowMajor subMatrix' (r0,c0) (rt,ct) m = trans $ subMatrix' (c0,r0) (ct,rt) (trans m) -------------------------------------------------------------------------- -- | Saves a matrix as 2D ASCII table. saveMatrix :: FilePath -> String -- ^ format (%f, %g, %e) -> Matrix Double -> IO () saveMatrix filename fmt m = do charname <- newCString filename charfmt <- newCString fmt let o = if orderOf m == RowMajor then 1 else 0 app1 (matrix_fprintf charname charfmt o) mat m "matrix_fprintf" free charname free charfmt foreign import ccall unsafe "matrix_fprintf" matrix_fprintf :: Ptr CChar -> Ptr CChar -> CInt -> TM ---------------------------------------------------------------------- conformMs ms = map (conformMTo (r,c)) ms where r = maximum (map rows ms) c = maximum (map cols ms) conformVs vs = map (conformVTo n) vs where n = maximum (map dim vs) conformMTo (r,c) m | size m == (r,c) = m | size m == (1,1) = reshape c (constantD (m@@>(0,0)) (r*c)) | size m == (r,1) = repCols c m | size m == (1,c) = repRows r m | otherwise = error $ "matrix " ++ shSize m ++ " cannot be expanded to (" ++ show r ++ "><"++ show c ++")" conformVTo n v | dim v == n = v | dim v == 1 = constantD (v@>0) n | otherwise = error $ "vector of dim=" ++ show (dim v) ++ " cannot be expanded to dim=" ++ show n repRows n x = fromRows (replicate n (flatten x)) repCols n x = fromColumns (replicate n (flatten x)) size m = (rows m, cols m) shSize m = "(" ++ show (rows m) ++"><"++ show (cols m)++")" ---------------------------------------------------------------------- instance (Storable t, NFData t) => NFData (Matrix t) where rnf m | d > 0 = rnf (v @> 0) | otherwise = () where d = dim v v = xdat m