{-# OPTIONS_GHC -fglasgow-exts #-} {-# LANGUAGE CPP, BangPatterns #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Packed.Internal.Matrix -- Copyright : (c) Alberto Ruiz 2007 -- License : GPL-style -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- Portability : portable (uses FFI) -- -- Internal matrix representation -- ----------------------------------------------------------------------------- -- #hide module Data.Packed.Internal.Matrix( Matrix(..), rows, cols, MatrixOrder(..), orderOf, createMatrix, mat, cmat, fmat, toLists, flatten, reshape, Element(..), trans, fromRows, toRows, fromColumns, toColumns, matrixFromVector, subMatrix, liftMatrix, liftMatrix2, (@@>), saveMatrix, fromComplexV, toComplexV, conjV, singleton ) where import Data.Packed.Internal.Common import Data.Packed.Internal.Signatures import Data.Packed.Internal.Vector import Foreign hiding (xor) import Data.Complex import Foreign.C.Types import Foreign.C.String ----------------------------------------------------------------- {- Design considerations for the Matrix Type ----------------------------------------- - we must easily handle both row major and column major order, for bindings to LAPACK and GSL/C - we'd like to simplify redundant matrix transposes: - Some of them arise from the order requirements of some functions - some functions (matrix product) admit transposed arguments - maybe we don't really need this kind of simplification: - more complex code - some computational overhead - only appreciable gain in code with a lot of redundant transpositions and cheap matrix computations - we could carry both the matrix and its (lazily computed) transpose. This may save some transpositions, but it is necessary to keep track of the data which is actually computed to be used by functions like the matrix product which admit both orders. - but if we need the transposed data and it is not in the structure, we must make sure that we touch the same foreignptr that is used in the computation. - a reasonable solution is using two constructors for a matrix. Transposition just "flips" the constructor. Actual data transposition is not done if followed by a matrix product or another transpose. -} data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq) -- | Matrix representation suitable for GSL and LAPACK computations. data Matrix t = MC { irows :: {-# UNPACK #-} !Int , icols :: {-# UNPACK #-} !Int , cdat :: {-# UNPACK #-} !(Vector t) } | MF { irows :: {-# UNPACK #-} !Int , icols :: {-# UNPACK #-} !Int , fdat :: {-# UNPACK #-} !(Vector t) } -- MC: preferred by C, fdat may require a transposition -- MF: preferred by LAPACK, cdat may require a transposition rows :: Matrix t -> Int rows = irows cols :: Matrix t -> Int cols = icols xdat MC {cdat = d } = d xdat MF {fdat = d } = d orderOf :: Matrix t -> MatrixOrder orderOf MF{} = ColumnMajor orderOf MC{} = RowMajor -- | Matrix transpose. trans :: Matrix t -> Matrix t trans MC {irows = r, icols = c, cdat = d } = MF {irows = c, icols = r, fdat = d } trans MF {irows = r, icols = c, fdat = d } = MC {irows = c, icols = r, cdat = d } cmat :: (Element t) => Matrix t -> Matrix t cmat m@MC{} = m cmat MF {irows = r, icols = c, fdat = d } = MC {irows = r, icols = c, cdat = transdata r d c} fmat :: (Element t) => Matrix t -> Matrix t fmat m@MF{} = m fmat MC {irows = r, icols = c, cdat = d } = MF {irows = r, icols = c, fdat = transdata c d r} -- C-Haskell matrix adapter -- mat :: Adapt (CInt -> CInt -> Ptr t -> r) (Matrix t) r mat :: (Storable t) => Matrix t -> (((CInt -> CInt -> Ptr t -> t1) -> t1) -> IO b) -> IO b mat a f = unsafeWith (xdat a) $ \p -> do let m g = do g (fi (rows a)) (fi (cols a)) p f m {- | Creates a vector by concatenation of rows @\> flatten ('ident' 3) 9 |> [1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0]@ -} flatten :: Element t => Matrix t -> Vector t flatten = cdat . cmat type Mt t s = Int -> Int -> Ptr t -> s -- not yet admitted by my haddock version -- infixr 6 ::> -- type t ::> s = Mt t s -- | the inverse of 'Data.Packed.Matrix.fromLists' toLists :: (Element t) => Matrix t -> [[t]] toLists m = splitEvery (cols m) . toList . flatten $ m -- | Create a matrix from a list of vectors. -- All vectors must have the same dimension, -- or dimension 1, which is are automatically expanded. fromRows :: Element t => [Vector t] -> Matrix t fromRows vs = case compatdim (map dim vs) of Nothing -> error "fromRows applied to [] or to vectors with different sizes" Just c -> reshape c . join . map (adapt c) $ vs where adapt c v | dim v == c = v | otherwise = constantD (v@>0) c -- | extracts the rows of a matrix as a list of vectors toRows :: Element t => Matrix t -> [Vector t] toRows m = toRows' 0 where v = flatten $ m r = rows m c = cols m toRows' k | k == r*c = [] | otherwise = subVector k c v : toRows' (k+c) -- | Creates a matrix from a list of vectors, as columns fromColumns :: Element t => [Vector t] -> Matrix t fromColumns m = trans . fromRows $ m -- | Creates a list of vectors from the columns of a matrix toColumns :: Element t => Matrix t -> [Vector t] toColumns m = toRows . trans $ m -- | Reads a matrix position. (@@>) :: Storable t => Matrix t -> (Int,Int) -> t infixl 9 @@> --m@M {rows = r, cols = c} @@> (i,j) -- | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range" -- | otherwise = cdat m `at` (i*c+j) MC {irows = r, icols = c, cdat = v} @@> (i,j) | safe = if i<0 || i>=r || j<0 || j>=c then error "matrix indexing out of range" else v `at` (i*c+j) | otherwise = v `at` (i*c+j) MF {irows = r, icols = c, fdat = v} @@> (i,j) | safe = if i<0 || i>=r || j<0 || j>=c then error "matrix indexing out of range" else v `at` (j*r+i) | otherwise = v `at` (j*r+i) {-# INLINE (@@>) #-} -- Unsafe matrix access without range checking atM' MC {icols = c, cdat = v} i j = v `at'` (i*c+j) atM' MF {irows = r, fdat = v} i j = v `at'` (j*r+i) {-# INLINE atM' #-} ------------------------------------------------------------------ matrixFromVector RowMajor c v = MC { irows = r, icols = c, cdat = v } where (d,m) = dim v `divMod` c r | m==0 = d | otherwise = error "matrixFromVector" matrixFromVector ColumnMajor c v = MF { irows = r, icols = c, fdat = v } where (d,m) = dim v `divMod` c r | m==0 = d | otherwise = error "matrixFromVector" -- allocates memory for a new matrix createMatrix :: (Storable a) => MatrixOrder -> Int -> Int -> IO (Matrix a) createMatrix order r c = do p <- createVector (r*c) return (matrixFromVector order c p) {- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns. (GNU-Octave groups by columns. To do it you can define @reshapeF r = trans . reshape r@ where r is the desired number of rows.) @\> reshape 4 ('fromList' [1..12]) (3><4) [ 1.0, 2.0, 3.0, 4.0 , 5.0, 6.0, 7.0, 8.0 , 9.0, 10.0, 11.0, 12.0 ]@ -} reshape :: Element t => Int -> Vector t -> Matrix t reshape c v = matrixFromVector RowMajor c v singleton x = reshape 1 (fromList [x]) -- | application of a vector function on the flattened matrix elements liftMatrix :: (Element a, Element b) => (Vector a -> Vector b) -> Matrix a -> Matrix b liftMatrix f MC { icols = c, cdat = d } = matrixFromVector RowMajor c (f d) liftMatrix f MF { icols = c, fdat = d } = matrixFromVector ColumnMajor c (f d) -- | application of a vector function on the flattened matrices elements liftMatrix2 :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t liftMatrix2 f m1 m2 | not (compat m1 m2) = error "nonconformant matrices in liftMatrix2" | otherwise = case m1 of MC {} -> matrixFromVector RowMajor (cols m1) (f (cdat m1) (flatten m2)) MF {} -> matrixFromVector ColumnMajor (cols m1) (f (fdat m1) ((fdat.fmat) m2)) compat :: Matrix a -> Matrix b -> Bool compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2 ------------------------------------------------------------------ -- | Auxiliary class. class (Storable a, Floating a) => Element a where subMatrixD :: (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix a -> Matrix a subMatrixD = subMatrix' transdata :: Int -> Vector a -> Int -> Vector a transdata = transdata' constantD :: a -> Int -> Vector a constantD = constant' instance Element Float where transdata = transdataAux ctransF constantD = constantAux cconstantF instance Element Double where transdata = transdataAux ctransR constantD = constantAux cconstantR instance Element (Complex Float) where transdata = transdataAux ctransQ constantD = constantAux cconstantQ instance Element (Complex Double) where transdata = transdataAux ctransC constantD = constantAux cconstantC ------------------------------------------------------------------- transdata' :: Storable a => Int -> Vector a -> Int -> Vector a transdata' c1 v c2 = if noneed then v else unsafePerformIO $ do w <- createVector (r2*c2) unsafeWith v $ \p -> unsafeWith w $ \q -> do let go (-1) _ = return () go !i (-1) = go (i-1) (c1-1) go !i !j = do x <- peekElemOff p (i*c1+j) pokeElemOff q (j*c2+i) x go i (j-1) go (r1-1) (c1-1) return w where r1 = dim v `div` c1 r2 = dim v `div` c2 noneed = r1 == 1 || c1 == 1 -- {-# SPECIALIZE transdata' :: Int -> Vector Double -> Int -> Vector Double #-} -- {-# SPECIALIZE transdata' :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double) #-} -- I don't know how to specialize... -- The above pragmas only seem to work on top level defs -- Fortunately everything seems to work using the above class -- C versions, still a little faster: transdataAux fun c1 d c2 = if noneed then d else unsafePerformIO $ do v <- createVector (dim d) unsafeWith d $ \pd -> unsafeWith v $ \pv -> fun (fi r1) (fi c1) pd (fi r2) (fi c2) pv // check "transdataAux" return v where r1 = dim d `div` c1 r2 = dim d `div` c2 noneed = r1 == 1 || c1 == 1 foreign import ccall "transF" ctransF :: TFMFM foreign import ccall "transR" ctransR :: TMM foreign import ccall "transQ" ctransQ :: TQMQM foreign import ccall "transC" ctransC :: TCMCM ---------------------------------------------------------------------- constant' v n = unsafePerformIO $ do w <- createVector n unsafeWith w $ \p -> do let go (-1) = return () go !k = pokeElemOff p k v >> go (k-1) go (n-1) return w -- C versions constantAux fun x n = unsafePerformIO $ do v <- createVector n px <- newArray [x] app1 (fun px) vec v "constantAux" free px return v constantF :: Float -> Int -> Vector Float constantF = constantAux cconstantF foreign import ccall "constantF" cconstantF :: Ptr Float -> TF constantR :: Double -> Int -> Vector Double constantR = constantAux cconstantR foreign import ccall "constantR" cconstantR :: Ptr Double -> TV constantQ :: Complex Float -> Int -> Vector (Complex Float) constantQ = constantAux cconstantQ foreign import ccall "constantQ" cconstantQ :: Ptr (Complex Float) -> TQV constantC :: Complex Double -> Int -> Vector (Complex Double) constantC = constantAux cconstantC foreign import ccall "constantC" cconstantC :: Ptr (Complex Double) -> TCV ---------------------------------------------------------------------- -- | Extracts a submatrix from a matrix. subMatrix :: Element a => (Int,Int) -- ^ (r0,c0) starting position -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix -> Matrix a -- ^ input matrix -> Matrix a -- ^ result subMatrix (r0,c0) (rt,ct) m | 0 <= r0 && 0 < rt && r0+rt <= (rows m) && 0 <= c0 && 0 < ct && c0+ct <= (cols m) = subMatrixD (r0,c0) (rt,ct) m | otherwise = error $ "wrong subMatrix "++ show ((r0,c0),(rt,ct))++" of "++show(rows m)++"x"++ show (cols m) subMatrix'' (r0,c0) (rt,ct) c v = unsafePerformIO $ do w <- createVector (rt*ct) unsafeWith v $ \p -> unsafeWith w $ \q -> do let go (-1) _ = return () go !i (-1) = go (i-1) (ct-1) go !i !j = do x <- peekElemOff p ((i+r0)*c+j+c0) pokeElemOff q (i*ct+j) x go i (j-1) go (rt-1) (ct-1) return w subMatrix' (r0,c0) (rt,ct) (MC _r c v) = MC rt ct $ subMatrix'' (r0,c0) (rt,ct) c v subMatrix' (r0,c0) (rt,ct) m = trans $ subMatrix' (c0,r0) (ct,rt) (trans m) -------------------------------------------------------------------------- -- | obtains the complex conjugate of a complex vector conjV :: (Storable a, RealFloat a) => Vector (Complex a) -> Vector (Complex a) conjV = mapVector conjugate -- | creates a complex vector from vectors with real and imaginary parts toComplexV :: Element a => (Vector a, Vector a) -> Vector (Complex a) toComplexV (r,i) = asComplex $ flatten $ fromColumns [r,i] -- | the inverse of 'toComplex' fromComplexV :: Element a => Vector (Complex a) -> (Vector a, Vector a) fromComplexV z = (r,i) where [r,i] = toColumns $ reshape 2 $ asReal z -------------------------------------------------------------------------- -- | Saves a matrix as 2D ASCII table. saveMatrix :: FilePath -> String -- ^ format (%f, %g, %e) -> Matrix Double -> IO () saveMatrix filename fmt m = do charname <- newCString filename charfmt <- newCString fmt let o = if orderOf m == RowMajor then 1 else 0 app1 (matrix_fprintf charname charfmt o) mat m "matrix_fprintf" free charname free charfmt foreign import ccall "matrix_fprintf" matrix_fprintf :: Ptr CChar -> Ptr CChar -> CInt -> TM