{-# OPTIONS_GHC -fglasgow-exts -fallow-undecidable-instances #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Packed.Internal.Matrix -- Copyright : (c) Alberto Ruiz 2007 -- License : GPL-style -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- Portability : portable (uses FFI) -- -- Fundamental types -- ----------------------------------------------------------------------------- module Data.Packed.Internal.Matrix where import Data.Packed.Internal.Vector import Foreign hiding (xor) import Complex import Control.Monad(when) import Debug.Trace import Data.List(transpose,intersperse) import Data.Typeable import Data.Maybe(fromJust) debug x = trace (show x) x data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq) -- | 2D array data Matrix t = M { rows :: Int , cols :: Int , dat :: Vector t , tdat :: Vector t , isTrans :: Bool , order :: MatrixOrder } deriving Typeable xor a b = a && not b || b && not a fortran m = order m == ColumnMajor cdat m = if fortran m `xor` isTrans m then tdat m else dat m fdat m = if fortran m `xor` isTrans m then dat m else tdat m trans m = m { rows = cols m , cols = rows m , isTrans = not (isTrans m) } type Mt t s = Int -> Int -> Ptr t -> s infixr 6 ::> type t ::> s = Mt t s mat d m f = f (rows m) (cols m) (ptr (d m)) instance (Show a, Storable a) => (Show (Matrix a)) where show m = (sizes++) . dsp . map (map show) . toLists $ m where sizes = "("++show (rows m)++"><"++show (cols m)++")\n" partit :: Int -> [a] -> [[a]] partit _ [] = [] partit n l = take n l : partit n (drop n l) toLists m | fortran m = transpose $ partit (rows m) . toList . dat $ m | otherwise = partit (cols m) . toList . dat $ m dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp where mt = transpose as longs = map (maximum . map length) mt mtp = zipWith (\a b -> map (pad a) b) longs mt pad n str = replicate (n - length str) ' ' ++ str unwords' = concat . intersperse ", " matrixFromVector RowMajor c v = M { rows = r , cols = c , dat = v , tdat = transdata c v r , order = RowMajor , isTrans = False } where r = dim v `div` c -- TODO check mod=0 matrixFromVector ColumnMajor c v = M { rows = r , cols = c , dat = v , tdat = transdata r v c , order = ColumnMajor , isTrans = False } where r = dim v `div` c -- TODO check mod=0 createMatrix order r c = do p <- createVector (r*c) return (matrixFromVector order c p) transdataG :: Storable a => Int -> Vector a -> Int -> Vector a transdataG c1 d c2 = fromList . concat . transpose . partit c1 . toList $ d transdataR :: Int -> Vector Double -> Int -> Vector Double transdataR = transdataAux ctransR transdataC :: Int -> Vector (Complex Double) -> Int -> Vector (Complex Double) transdataC = transdataAux ctransC transdataAux fun c1 d c2 = unsafePerformIO $ do v <- createVector (dim d) let r1 = dim d `div` c1 r2 = dim d `div` c2 fun r1 c1 (ptr d) r2 c2 (ptr v) // check "transdataAux" [d] --putStrLn "---> transdataAux" return v foreign import ccall safe "aux.h transR" ctransR :: Double ::> Double ::> IO Int foreign import ccall safe "aux.h transC" ctransC :: Complex Double ::> Complex Double ::> IO Int transdata :: Field a => Int -> Vector a -> Int -> Vector a transdata c1 d c2 | isReal baseOf d = scast $ transdataR c1 (scast d) c2 | isComp baseOf d = scast $ transdataC c1 (scast d) c2 | otherwise = transdataG c1 d c2 --transdata :: Storable a => Int -> Vector a -> Int -> Vector a --transdata = transdataG --{-# RULES "transdataR" transdata=transdataR #-} --{-# RULES "transdataC" transdata=transdataC #-} -- | extracts the rows of a matrix as a list of vectors toRows :: Storable t => Matrix t -> [Vector t] toRows m = toRows' 0 where v = cdat m r = rows m c = cols m toRows' k | k == r*c = [] | otherwise = subVector k c v : toRows' (k+c) ------------------------------------------------------------------ dotL a b = sum (zipWith (*) a b) multiplyL a b = [[dotL x y | y <- transpose b] | x <- a] transL m = matrixFromVector RowMajor (rows m) $ transdataG (cols m) (cdat m) (rows m) multiplyG a b = matrixFromVector RowMajor (cols b) $ fromList $ concat $ multiplyL (toLists a) (toLists b) ------------------------------------------------------------------ gmatC m f | fortran m = if (isTrans m) then f 0 (rows m) (cols m) (ptr (dat m)) else f 1 (cols m) (rows m) (ptr (dat m)) | otherwise = if isTrans m then f 1 (cols m) (rows m) (ptr (dat m)) else f 0 (rows m) (cols m) (ptr (dat m)) multiplyAux order fun a b = unsafePerformIO $ do when (cols a /= rows b) $ error $ "inconsistent dimensions in contraction "++ show (rows a,cols a) ++ " x " ++ show (rows b, cols b) r <- createMatrix order (rows a) (cols b) fun // gmatC a // gmatC b // mat dat r // check "multiplyAux" [dat a, dat b] return r foreign import ccall safe "aux.h multiplyR" cmultiplyR :: Int -> Double ::> (Int -> Double ::> (Double ::> IO Int)) foreign import ccall safe "aux.h multiplyC" cmultiplyC :: Int -> Complex Double ::> (Int -> Complex Double ::> (Complex Double ::> IO Int)) multiply :: (Num a, Field a) => MatrixOrder -> Matrix a -> Matrix a -> Matrix a multiply RowMajor a b = multiplyD RowMajor a b multiply ColumnMajor a b = trans $ multiplyT ColumnMajor a b multiplyT order a b = multiplyD order (trans b) (trans a) multiplyD order a b | isReal (baseOf.dat) a = scast $ multiplyAux order cmultiplyR (scast a) (scast b) | isComp (baseOf.dat) a = scast $ multiplyAux order cmultiplyC (scast a) (scast b) | otherwise = multiplyG a b