{-# LANGUAGE MagicHash, CPP, UnboxedTuples, BangPatterns, FlexibleContexts #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Packed.Internal.Vector -- Copyright : (c) Alberto Ruiz 2007 -- License : GPL-style -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- Portability : portable (uses FFI) -- -- Vector implementation -- ----------------------------------------------------------------------------- module Data.Packed.Internal.Vector ( Vector, dim, fromList, toList, (|>), join, (@>), safe, at, at', subVector, takesV, mapVector, zipVector, unzipVectorWith, mapVectorM, mapVectorM_, foldVector, foldVectorG, foldLoop, createVector, vec, asComplex, asReal, fwriteVector, freadVector, fprintfVector, fscanfVector, cloneVector, unsafeToForeignPtr, unsafeFromForeignPtr, unsafeWith ) where import Data.Packed.Internal.Common import Data.Packed.Internal.Signatures import Foreign import Foreign.C.String import Foreign.C.Types(CInt,CChar) import Data.Complex import Control.Monad(when) import Control.Monad.Trans #if __GLASGOW_HASKELL__ >= 605 import GHC.ForeignPtr (mallocPlainForeignPtrBytes) #else import Foreign.ForeignPtr (mallocForeignPtrBytes) #endif import GHC.Base #if __GLASGOW_HASKELL__ < 612 import GHC.IOBase hiding (liftIO) #endif #ifdef VECTOR import qualified Data.Vector.Storable as Vector import Data.Vector.Storable(Vector, unsafeToForeignPtr, unsafeFromForeignPtr, unsafeWith) #endif #ifdef VECTOR -- | Number of elements dim :: (Storable t) => Vector t -> Int dim = Vector.length #else -- | One-dimensional array of objects stored in a contiguous memory block. data Vector t = V { ioff :: {-# UNPACK #-} !Int -- ^ offset of first element , idim :: {-# UNPACK #-} !Int -- ^ number of elements , fptr :: {-# UNPACK #-} !(ForeignPtr t) -- ^ foreign pointer to the memory block } unsafeToForeignPtr :: Vector a -> (ForeignPtr a, Int, Int) unsafeToForeignPtr v = (fptr v, ioff v, idim v) -- | Same convention as in Roman Leshchinskiy's vector package. unsafeFromForeignPtr :: ForeignPtr a -> Int -> Int -> Vector a unsafeFromForeignPtr fp i n | n > 0 = V {ioff = i, idim = n, fptr = fp} | otherwise = error "unsafeFromForeignPtr with dim < 1" unsafeWith (V i _ fp) m = withForeignPtr fp $ \p -> m (p `advancePtr` i) {-# INLINE unsafeWith #-} -- | Number of elements dim :: (Storable t) => Vector t -> Int dim = idim #endif -- C-Haskell vector adapter -- vec :: Adapt (CInt -> Ptr t -> r) (Vector t) r vec :: (Storable t) => Vector t -> (((CInt -> Ptr t -> t1) -> t1) -> IO b) -> IO b vec x f = unsafeWith x $ \p -> do let v g = do g (fi $ dim x) p f v {-# INLINE vec #-} -- allocates memory for a new vector createVector :: Storable a => Int -> IO (Vector a) createVector n = do when (n <= 0) $ error ("trying to createVector of dim "++show n) fp <- doMalloc undefined return $ unsafeFromForeignPtr fp 0 n where -- -- Use the much cheaper Haskell heap allocated storage -- for foreign pointer space we control -- doMalloc :: Storable b => b -> IO (ForeignPtr b) doMalloc dummy = do #if __GLASGOW_HASKELL__ >= 605 mallocPlainForeignPtrBytes (n * sizeOf dummy) #else mallocForeignPtrBytes (n * sizeOf dummy) #endif {- | creates a Vector from a list: @> fromList [2,3,5,7] 4 |> [2.0,3.0,5.0,7.0]@ -} fromList :: Storable a => [a] -> Vector a fromList l = unsafePerformIO $ do v <- createVector (length l) unsafeWith v $ \ p -> pokeArray p l return v safeRead v = inlinePerformIO . unsafeWith v {-# INLINE safeRead #-} inlinePerformIO :: IO a -> a inlinePerformIO (IO m) = case m realWorld# of (# _, r #) -> r {-# INLINE inlinePerformIO #-} {- | extracts the Vector elements to a list @> toList (linspace 5 (1,10)) [1.0,3.25,5.5,7.75,10.0]@ -} toList :: Storable a => Vector a -> [a] toList v = safeRead v $ peekArray (dim v) {- | An alternative to 'fromList' with explicit dimension. The input list is explicitly truncated if it is too long, so it may safely be used, for instance, with infinite lists. This is the format used in the instances for Show (Vector a). -} (|>) :: (Storable a) => Int -> [a] -> Vector a infixl 9 |> n |> l = if length l' == n then fromList l' else error "list too short for |>" where l' = take n l -- | access to Vector elements without range checking at' :: Storable a => Vector a -> Int -> a at' v n = safeRead v $ flip peekElemOff n {-# INLINE at' #-} -- -- turn off bounds checking with -funsafe at configure time. -- ghc will optimise away the salways true case at compile time. -- #if defined(UNSAFE) safe :: Bool safe = False #else safe = True #endif -- | access to Vector elements with range checking. at :: Storable a => Vector a -> Int -> a at v n | safe = if n >= 0 && n < dim v then at' v n else error "vector index out of range" | otherwise = at' v n {-# INLINE at #-} {- | takes a number of consecutive elements from a Vector @> subVector 2 3 (fromList [1..10]) 3 |> [3.0,4.0,5.0]@ -} subVector :: Storable t => Int -- ^ index of the starting element -> Int -- ^ number of elements to extract -> Vector t -- ^ source -> Vector t -- ^ result #ifdef VECTOR subVector = Vector.slice #else subVector k l v@V{idim = n, ioff = i} | k<0 || k >= n || k+l > n || l < 0 = error "subVector out of range" | otherwise = v {idim = l, ioff = i+k} subVectorCopy k l (v@V {idim=n}) | k<0 || k >= n || k+l > n || l < 0 = error "subVector out of range" | otherwise = unsafePerformIO $ do r <- createVector l let f _ s _ d = copyArray d (advancePtr s k) l >> return 0 app2 f vec v vec r "subVector" return r #endif {- | Reads a vector position: @> fromList [0..9] \@\> 7 7.0@ -} (@>) :: Storable t => Vector t -> Int -> t infixl 9 @> (@>) = at {- | creates a new Vector by joining a list of Vectors @> join [fromList [1..5], constant 1 3] 8 |> [1.0,2.0,3.0,4.0,5.0,1.0,1.0,1.0]@ -} join :: Storable t => [Vector t] -> Vector t join [] = error "joining zero vectors" join [v] = v join as = unsafePerformIO $ do let tot = sum (map dim as) r <- createVector tot unsafeWith r $ \ptr -> joiner as tot ptr return r where joiner [] _ _ = return () joiner (v:cs) _ p = do let n = dim v unsafeWith v $ \pb -> copyArray p pb n joiner cs 0 (advancePtr p n) {- | Extract consecutive subvectors of the given sizes. @> takesV [3,4] (linspace 10 (1,10)) [3 |> [1.0,2.0,3.0],4 |> [4.0,5.0,6.0,7.0]]@ -} takesV :: Storable t => [Int] -> Vector t -> [Vector t] takesV ms w | sum ms > dim w = error $ "takesV " ++ show ms ++ " on dim = " ++ (show $ dim w) | otherwise = go ms w where go [] _ = [] go (n:ns) v = subVector 0 n v : go ns (subVector n (dim v - n) v) --------------------------------------------------------------- -- | transforms a complex vector into a real vector with alternating real and imaginary parts asReal :: (RealFloat a, Storable a) => Vector (Complex a) -> Vector a --asReal v = V { ioff = 2*ioff v, idim = 2*dim v, fptr = castForeignPtr (fptr v) } asReal v = unsafeFromForeignPtr (castForeignPtr fp) (2*i) (2*n) where (fp,i,n) = unsafeToForeignPtr v -- | transforms a real vector into a complex vector with alternating real and imaginary parts asComplex :: (RealFloat a, Storable a) => Vector a -> Vector (Complex a) --asComplex v = V { ioff = ioff v `div` 2, idim = dim v `div` 2, fptr = castForeignPtr (fptr v) } asComplex v = unsafeFromForeignPtr (castForeignPtr fp) (i `div` 2) (n `div` 2) where (fp,i,n) = unsafeToForeignPtr v ---------------------------------------------------------------- cloneVector :: Storable t => Vector t -> IO (Vector t) cloneVector v = do let n = dim v r <- createVector n let f _ s _ d = copyArray d s n >> return 0 app2 f vec v vec r "cloneVector" return r ------------------------------------------------------------------ -- | map on Vectors mapVector :: (Storable a, Storable b) => (a-> b) -> Vector a -> Vector b mapVector f v = unsafePerformIO $ do w <- createVector (dim v) unsafeWith v $ \p -> unsafeWith w $ \q -> do let go (-1) = return () go !k = do x <- peekElemOff p k pokeElemOff q k (f x) go (k-1) go (dim v -1) return w {-# INLINE mapVector #-} -- | zipWith for Vectors zipVector :: (Storable a, Storable b, Storable c) => (a-> b -> c) -> Vector a -> Vector b -> Vector c zipVector f u v = unsafePerformIO $ do let n = min (dim u) (dim v) w <- createVector n unsafeWith u $ \pu -> unsafeWith v $ \pv -> unsafeWith w $ \pw -> do let go (-1) = return () go !k = do x <- peekElemOff pu k y <- peekElemOff pv k pokeElemOff pw k (f x y) go (k-1) go (n -1) return w {-# INLINE zipVector #-} -- | unzipWith for Vectors unzipVectorWith :: (Storable (a,b), Storable c, Storable d) => ((a,b) -> (c,d)) -> Vector (a,b) -> (Vector c,Vector d) unzipVectorWith f u = unsafePerformIO $ do let n = dim u v <- createVector n w <- createVector n unsafeWith u $ \pu -> unsafeWith v $ \pv -> unsafeWith w $ \pw -> do let go (-1) = return () go !k = do z <- peekElemOff pu k let (x,y) = f z pokeElemOff pv k x pokeElemOff pw k y go (k-1) go (n-1) return (v,w) {-# INLINE unzipVectorWith #-} foldVector :: Storable a => (a -> b -> b) -> b -> Vector a -> b foldVector f x v = unsafePerformIO $ unsafeWith v $ \p -> do let go (-1) s = return s go !k !s = do y <- peekElemOff p k go (k-1::Int) (f y s) go (dim v -1) x {-# INLINE foldVector #-} foldLoop f s0 d = go (d - 1) s0 where go 0 s = f (0::Int) s go !j !s = go (j - 1) (f j s) foldVectorG f s0 v = foldLoop g s0 (dim v) where g !k !s = f k (at' v) s {-# INLINE g #-} -- Thanks to Ryan Ingram (http://permalink.gmane.org/gmane.comp.lang.haskell.cafe/46479) {-# INLINE foldVectorG #-} ------------------------------------------------------------------- -- | monadic map over Vectors mapVectorM :: (Storable a, Storable b, MonadIO m) => (a -> m b) -> Vector a -> m (Vector b) mapVectorM f v = do w <- liftIO $ createVector (dim v) mapVectorM' f v w 0 (dim v -1) return w where mapVectorM' f' v' w' !k !t | k == t = do x <- liftIO $ unsafeWith v' $ \p -> peekElemOff p k y <- f' x liftIO $ unsafeWith w' $ \q -> pokeElemOff q k y | otherwise = do x <- liftIO $ unsafeWith v' $ \p -> peekElemOff p k y <- f' x liftIO $ unsafeWith w' $ \q -> pokeElemOff q k y mapVectorM' f' v' w' (k+1) t {-# INLINE mapVectorM #-} -- | monadic map over Vectors mapVectorM_ :: (Storable a, MonadIO m) => (a -> m ()) -> Vector a -> m () mapVectorM_ f v = do mapVectorM' f v 0 (dim v -1) where mapVectorM' f' v' !k !t | k == t = do x <- liftIO $ unsafeWith v' $ \p -> peekElemOff p k f' x | otherwise = do x <- liftIO $ unsafeWith v' $ \p -> peekElemOff p k _ <- f' x mapVectorM' f' v' (k+1) t {-# INLINE mapVectorM_ #-} ------------------------------------------------------------------- -- | Loads a vector from an ASCII file (the number of elements must be known in advance). fscanfVector :: FilePath -> Int -> IO (Vector Double) fscanfVector filename n = do charname <- newCString filename res <- createVector n app1 (gsl_vector_fscanf charname) vec res "gsl_vector_fscanf" free charname return res foreign import ccall "vector_fscanf" gsl_vector_fscanf:: Ptr CChar -> TV -- | Saves the elements of a vector, with a given format (%f, %e, %g), to an ASCII file. fprintfVector :: FilePath -> String -> Vector Double -> IO () fprintfVector filename fmt v = do charname <- newCString filename charfmt <- newCString fmt app1 (gsl_vector_fprintf charname charfmt) vec v "gsl_vector_fprintf" free charname free charfmt foreign import ccall "vector_fprintf" gsl_vector_fprintf :: Ptr CChar -> Ptr CChar -> TV -- | Loads a vector from a binary file (the number of elements must be known in advance). freadVector :: FilePath -> Int -> IO (Vector Double) freadVector filename n = do charname <- newCString filename res <- createVector n app1 (gsl_vector_fread charname) vec res "gsl_vector_fread" free charname return res foreign import ccall "vector_fread" gsl_vector_fread:: Ptr CChar -> TV -- | Saves the elements of a vector to a binary file. fwriteVector :: FilePath -> Vector Double -> IO () fwriteVector filename v = do charname <- newCString filename app1 (gsl_vector_fwrite charname) vec v "gsl_vector_fwrite" free charname foreign import ccall "vector_fwrite" gsl_vector_fwrite :: Ptr CChar -> TV