----------------------------------------------------------------------------- -- | -- Module : Data.Packed.Vector -- Copyright : (c) Alberto Ruiz 2009 -- License : GPL -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- -- Random vectors and matrices. -- ----------------------------------------------------------------------------- module Data.Packed.Random ( RandDist(..), randomVector, gaussianSample, uniformSample, meanCov, ) where import Numeric.GSL.Vector import Data.Packed import Numeric.LinearAlgebra.Linear import Numeric.LinearAlgebra.Algorithms import Numeric.LinearAlgebra.Instances() import Numeric.LinearAlgebra.Interface -- | Obtains a matrix whose rows are pseudorandom samples from a multivariate -- Gaussian distribution. gaussianSample :: Int -- ^ seed -> Int -- ^ number of rows -> Vector Double -- ^ mean vector -> Matrix Double -- ^ covariance matrix -> Matrix Double -- ^ result gaussianSample seed n med cov = m where c = dim med meds = constant 1 n `outer` med rs = reshape c $ randomVector seed Gaussian (c * n) m = rs <> cholSH cov + meds -- | Obtains a matrix whose rows are pseudorandom samples from a multivariate -- uniform distribution. uniformSample :: Int -- ^ seed -> Int -- ^ number of rows -> [(Double,Double)] -- ^ ranges for each column -> Matrix Double -- ^ result uniformSample seed n rgs = m where (as,bs) = unzip rgs a = fromList as cs = zipWith subtract as bs d = dim a dat = toRows $ reshape n $ randomVector seed Uniform (n*d) am = constant 1 n `outer` a m = fromColumns (zipWith scale cs dat) + am ------------ utilities ------------------------------- -- | Compute mean vector and covariance matrix of the rows of a matrix. meanCov :: Matrix Double -> (Vector Double, Matrix Double) meanCov x = (med,cov) where r = rows x k = 1 / fromIntegral r med = constant k r <> x meds = constant 1 r `outer` med xc = x - meds cov = (trans xc <> xc) / fromIntegral (r-1)