{-# OPTIONS_GHC -fglasgow-exts #-} ----------------------------------------------------------------------------- -- | -- Module : LAPACK -- Copyright : (c) Alberto Ruiz 2006-7 -- License : GPL-style -- -- Maintainer : Alberto Ruiz (aruiz at um dot es) -- Stability : provisional -- Portability : portable (uses FFI) -- -- Wrappers for a few LAPACK functions (). -- ----------------------------------------------------------------------------- module LAPACK ( svdR, svdR', svdRdd, svdRdd', svdC, svdC', eigC, eigR, eigS, eigH, linearSolveR, linearSolveC, linearSolveLSR, linearSolveLSC, linearSolveSVDR, linearSolveSVDC, ) where import Data.Packed.Internal import Data.Packed.Internal.Vector import Data.Packed.Internal.Matrix import Data.Packed.Vector import Data.Packed.Matrix import GSL.Vector(scale) import Complex import Foreign ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h svd_l_R" dgesvd :: TMMVM -- | Wrapper for LAPACK's /dgesvd/, which computes the full svd decomposition of a real matrix. -- -- @(u,s,v)=svdR m@ so that @m=u \<\> s \<\> 'trans' v@. svdR :: Matrix Double -> (Matrix Double, Matrix Double , Matrix Double) svdR x@M {rows = r, cols = c} = (u, diagRect s r c, v) where (u,s,v) = svdR' x svdR' x@M {rows = r, cols = c} = unsafePerformIO $ do u <- createMatrix ColumnMajor r r s <- createVector (min r c) v <- createMatrix ColumnMajor c c dgesvd // mat fdat x // mat dat u // vec s // mat dat v // check "svdR" [fdat x] return (u,s,trans v) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h svd_l_Rdd" dgesdd :: TMMVM -- | Wrapper for LAPACK's /dgesvd/, which computes the full svd decomposition of a real matrix. -- -- @(u,s,v)=svdRdd m@ so that @m=u \<\> s \<\> 'trans' v@. svdRdd :: Matrix Double -> (Matrix Double, Matrix Double , Matrix Double) svdRdd x@M {rows = r, cols = c} = (u, diagRect s r c, v) where (u,s,v) = svdRdd' x svdRdd' x@M {rows = r, cols = c} = unsafePerformIO $ do u <- createMatrix ColumnMajor r r s <- createVector (min r c) v <- createMatrix ColumnMajor c c dgesdd // mat fdat x // mat dat u // vec s // mat dat v // check "svdRdd" [fdat x] return (u,s,trans v) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h svd_l_C" zgesvd :: TCMCMVCM -- | Wrapper for LAPACK's /zgesvd/, which computes the full svd decomposition of a complex matrix. -- -- @(u,s,v)=svdC m@ so that @m=u \<\> s \<\> 'trans' v@. svdC :: Matrix (Complex Double) -> (Matrix (Complex Double), Matrix Double, Matrix (Complex Double)) svdC x@M {rows = r, cols = c} = (u, diagRect s r c, v) where (u,s,v) = svdC' x svdC' x@M {rows = r, cols = c} = unsafePerformIO $ do u <- createMatrix ColumnMajor r r s <- createVector (min r c) v <- createMatrix ColumnMajor c c zgesvd // mat fdat x // mat dat u // vec s // mat dat v // check "svdC" [fdat x] return (u,s,trans v) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h eig_l_C" zgeev :: TCMCMCVCM -- | Wrapper for LAPACK's /zgeev/, which computes the eigenvalues and right eigenvectors of a general complex matrix: -- -- if @(l,v)=eigC m@ then @m \<\> v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are not sorted. eigC :: Matrix (Complex Double) -> (Vector (Complex Double), Matrix (Complex Double)) eigC (m@M {rows = r}) | r == 1 = (fromList [cdat m `at` 0], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r dummy <- createMatrix ColumnMajor 1 1 zgeev // mat fdat m // mat dat dummy // vec l // mat dat v // check "eigC" [fdat m] return (l,v) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h eig_l_R" dgeev :: TMMCVM -- | Wrapper for LAPACK's /dgeev/, which computes the eigenvalues and right eigenvectors of a general real matrix: -- -- if @(l,v)=eigR m@ then @m \<\> v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are not sorted. eigR :: Matrix Double -> (Vector (Complex Double), Matrix (Complex Double)) eigR (m@M {rows = r}) = (s', v'') where (s,v) = eigRaux m s' = toComplex (subVector 0 r (asReal s), subVector r r (asReal s)) v' = toRows $ trans v v'' = fromColumns $ fixeig (toList s') v' eigRaux :: Matrix Double -> (Vector (Complex Double), Matrix Double) eigRaux (m@M {rows = r}) | r == 1 = (fromList [(cdat m `at` 0):+0], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r dummy <- createMatrix ColumnMajor 1 1 dgeev // mat fdat m // mat dat dummy // vec l // mat dat v // check "eigR" [fdat m] return (l,v) fixeig [] _ = [] fixeig [r] [v] = [comp v] fixeig ((r1:+i1):(r2:+i2):r) (v1:v2:vs) | r1 == r2 && i1 == (-i2) = toComplex (v1,v2) : toComplex (v1,scale (-1) v2) : fixeig r vs | otherwise = comp v1 : fixeig ((r2:+i2):r) (v2:vs) -- scale r v = fromList [r] `outer` v ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h eig_l_S" dsyev :: TMVM -- | Wrapper for LAPACK's /dsyev/, which computes the eigenvalues and right eigenvectors of a symmetric real matrix: -- -- if @(l,v)=eigSl m@ then @m \<\> v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are sorted in descending order (use eigS' for ascending order). eigS :: Matrix Double -> (Vector Double, Matrix Double) eigS m = (s', fliprl v) where (s,v) = eigS' m s' = fromList . reverse . toList $ s eigS' (m@M {rows = r}) | r == 1 = (fromList [cdat m `at` 0], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r dsyev // mat fdat m // vec l // mat dat v // check "eigS" [fdat m] return (l,v) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h eig_l_H" zheev :: TCMVCM -- | Wrapper for LAPACK's /zheev/, which computes the eigenvalues and right eigenvectors of a hermitian complex matrix: -- -- if @(l,v)=eigH m@ then @m \<\> s v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are sorted in descending order. eigH :: Matrix (Complex Double) -> (Vector Double, Matrix (Complex Double)) eigH m = (s', fliprl v) where (s,v) = eigH' m s' = fromList . reverse . toList $ s eigH' (m@M {rows = r}) | r == 1 = (fromList [realPart (cdat m `at` 0)], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r zheev // mat fdat m // vec l // mat dat v // check "eigH" [fdat m] return (l,v) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveR_l" dgesv :: TMMM -- | Wrapper for LAPACK's /dgesv/, which solves a general real linear system (for several right-hand sides) internally using the lu decomposition. linearSolveR :: Matrix Double -> Matrix Double -> Matrix Double linearSolveR a@(M {rows = n1, cols = n2}) b@(M {rows = r, cols = c}) | n1==n2 && n1==r = unsafePerformIO $ do s <- createMatrix ColumnMajor r c dgesv // mat fdat a // mat fdat b // mat dat s // check "linearSolveR" [fdat a, fdat b] return s | otherwise = error "linearSolveR of nonsquare matrix" ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveC_l" zgesv :: TCMCMCM -- | Wrapper for LAPACK's /zgesv/, which solves a general complex linear system (for several right-hand sides) internally using the lu decomposition. linearSolveC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double) linearSolveC a@(M {rows = n1, cols = n2}) b@(M {rows = r, cols = c}) | n1==n2 && n1==r = unsafePerformIO $ do s <- createMatrix ColumnMajor r c zgesv // mat fdat a // mat fdat b // mat dat s // check "linearSolveC" [fdat a, fdat b] return s | otherwise = error "linearSolveC of nonsquare matrix" ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveLSR_l" dgels :: TMMM -- | Wrapper for LAPACK's /dgels/, which obtains the least squared error solution of an overconstrained real linear system or the minimum norm solution of an underdetermined system, for several right-hand sides. For rank deficient systems use 'linearSolveSVDR'. linearSolveLSR :: Matrix Double -> Matrix Double -> Matrix Double linearSolveLSR a b = subMatrix (0,0) (cols a, cols b) $ linearSolveLSR_l a b linearSolveLSR_l a@(M {rows = m, cols = n}) b@(M {cols = nrhs}) = unsafePerformIO $ do r <- createMatrix ColumnMajor (max m n) nrhs dgels // mat fdat a // mat fdat b // mat dat r // check "linearSolveLSR" [fdat a, fdat b] return r ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveLSC_l" zgels :: TCMCMCM -- | Wrapper for LAPACK's /zgels/, which obtains the least squared error solution of an overconstrained complex linear system or the minimum norm solution of an underdetermined system, for several right-hand sides. For rank deficient systems use 'linearSolveSVDC'. linearSolveLSC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double) linearSolveLSC a b = subMatrix (0,0) (cols a, cols b) $ linearSolveLSC_l a b linearSolveLSC_l a@(M {rows = m, cols = n}) b@(M {cols = nrhs}) = unsafePerformIO $ do r <- createMatrix ColumnMajor (max m n) nrhs zgels // mat fdat a // mat fdat b // mat dat r // check "linearSolveLSC" [fdat a, fdat b] return r ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveSVDR_l" dgelss :: Double -> TMMM -- | Wrapper for LAPACK's /dgelss/, which obtains the minimum norm solution to a real linear least squares problem Ax=B using the svd, for several right-hand sides. Admits rank deficient systems but it is slower than 'linearSolveLSR'. The effective rank of A is determined by treating as zero those singular valures which are less than rcond times the largest singular value. If rcond == Nothing machine precision is used. linearSolveSVDR :: Maybe Double -- ^ rcond -> Matrix Double -- ^ coefficient matrix -> Matrix Double -- ^ right hand sides (as columns) -> Matrix Double -- ^ solution vectors (as columns) linearSolveSVDR (Just rcond) a b = subMatrix (0,0) (cols a, cols b) $ linearSolveSVDR_l rcond a b linearSolveSVDR Nothing a b = linearSolveSVDR (Just (-1)) a b linearSolveSVDR_l rcond a@(M {rows = m, cols = n}) b@(M {cols = nrhs}) = unsafePerformIO $ do r <- createMatrix ColumnMajor (max m n) nrhs dgelss rcond // mat fdat a // mat fdat b // mat dat r // check "linearSolveSVDR" [fdat a, fdat b] return r ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveSVDC_l" zgelss :: Double -> TCMCMCM -- | Wrapper for LAPACK's /zgelss/, which obtains the minimum norm solution to a complex linear least squares problem Ax=B using the svd, for several right-hand sides. Admits rank deficient systems but it is slower than 'linearSolveLSC'. The effective rank of A is determined by treating as zero those singular valures which are less than rcond times the largest singular value. If rcond == Nothing machine precision is used. linearSolveSVDC :: Maybe Double -- ^ rcond -> Matrix (Complex Double) -- ^ coefficient matrix -> Matrix (Complex Double) -- ^ right hand sides (as columns) -> Matrix (Complex Double) -- ^ solution vectors (as columns) linearSolveSVDC (Just rcond) a b = subMatrix (0,0) (cols a, cols b) $ linearSolveSVDC_l rcond a b linearSolveSVDC Nothing a b = linearSolveSVDC (Just (-1)) a b linearSolveSVDC_l rcond a@(M {rows = m, cols = n}) b@(M {cols = nrhs}) = unsafePerformIO $ do r <- createMatrix ColumnMajor (max m n) nrhs zgelss rcond // mat fdat a // mat fdat b // mat dat r // check "linearSolveSVDC" [fdat a, fdat b] return r