{-# OPTIONS_GHC -fglasgow-exts #-} ----------------------------------------------------------------------------- {- | Module : LinearAlgebra.Algorithms Copyright : (c) Alberto Ruiz 2006-7 License : GPL-style Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : uses ffi A generic interface for a number of essential functions. Using it some higher level algorithms and testing properties can be written for both real and complex matrices. In any case, the specific functions for particular base types can also be explicitly imported from the LAPACK and GSL.Matrix modules. -} ----------------------------------------------------------------------------- module LinearAlgebra.Algorithms ( -- * Linear Systems linearSolve, inv, pinv, pinvTol, det, -- * Matrix factorizations -- ** Singular value decomposition svd, full, economy, -- ** Eigensystems eig, LinearAlgebra.Algorithms.eigS, LinearAlgebra.Algorithms.eigH, -- ** Other LinearAlgebra.Algorithms.qr, chol, -- * Nullspace nullspacePrec, nullVector, -- * Misc eps, i, ctrans, Normed(..), NormType(..), GenMat(linearSolveSVD,lu,eigSH) ) where import Data.Packed.Internal hiding (fromComplex, toComplex, comp, conj) import Data.Packed import GSL.Matrix(luR,luC,qr) import GSL.Vector import LinearAlgebra.LAPACK as LAPACK import Complex import LinearAlgebra.Linear -- | matrix computations available for both real and complex matrices class (Linear Matrix t) => GenMat t where svd :: Matrix t -> (Matrix t, Vector Double, Matrix t) lu :: Matrix t -> (Matrix t, Matrix t, [Int], t) linearSolve :: Matrix t -> Matrix t -> Matrix t linearSolveSVD :: Matrix t -> Matrix t -> Matrix t eig :: Matrix t -> (Vector (Complex Double), Matrix (Complex Double)) eigSH :: Matrix t -> (Vector Double, Matrix t) chol :: Matrix t -> Matrix t -- | conjugate transpose ctrans :: Matrix t -> Matrix t instance GenMat Double where svd = svdR lu = luR linearSolve = linearSolveR linearSolveSVD = linearSolveSVDR Nothing ctrans = trans eig = eigR eigSH = LAPACK.eigS chol = cholS instance GenMat (Complex Double) where svd = svdC lu = luC linearSolve = linearSolveC linearSolveSVD = linearSolveSVDC Nothing ctrans = conjTrans eig = eigC eigSH = LAPACK.eigH chol = cholH -- | eigensystem of a symmetric matrix eigS :: Matrix Double -> (Vector Double, Matrix Double) eigS = LAPACK.eigS -- | eigensystem of a hermitian matrix eigH :: Matrix (Complex Double) -> (Vector Double, Matrix (Complex Double)) eigH = LAPACK.eigH qr :: Matrix Double -> (Matrix Double, Matrix Double) qr = GSL.Matrix.qr square m = rows m == cols m det :: GenMat t => Matrix t -> t det m | square m = s * (product $ toList $ takeDiag $ u) | otherwise = error "det of nonsquare matrix" where (_,u,_,s) = lu m inv :: GenMat t => Matrix t -> Matrix t inv m | square m = m `linearSolve` ident (rows m) | otherwise = error "inv of nonsquare matrix" pinv :: GenMat t => Matrix t -> Matrix t pinv m = linearSolveSVD m (ident (rows m)) full :: Field t => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Matrix Double, Matrix t) full svd m = (u, d ,v) where (u,s,v) = svd m d = diagRect s r c r = rows m c = cols m economy :: Field t => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Vector Double, Matrix t) economy svd m = (u', subVector 0 d s, v') where (u,s,v) = svd m sl@(g:_) = toList (complex s) s' = fromList . filter rec $ sl rec x = magnitude x > magnitude g*tol t = 1 tol = (fromIntegral (max (rows m) (cols m)) * magnitude g * t * eps) r = rows m c = cols m d = dim s' u' = takeColumns d u v' = takeColumns d v -- | The machine precision of a Double: @eps == 2.22044604925031e-16@ (the value used by GNU-Octave). eps :: Double eps = 2.22044604925031e-16 -- | The imaginary unit: @i == 0.0 :+ 1.0@ i :: Complex Double i = 0:+1 -- | matrix product mXm :: (Num t, GenMat t) => Matrix t -> Matrix t -> Matrix t mXm = multiply -- | matrix - vector product mXv :: (Num t, GenMat t) => Matrix t -> Vector t -> Vector t mXv m v = flatten $ m `mXm` (asColumn v) -- | vector - matrix product vXm :: (Num t, GenMat t) => Vector t -> Matrix t -> Vector t vXm v m = flatten $ (asRow v) `mXm` m --------------------------------------------------------------------------- norm2 :: Vector Double -> Double norm2 = toScalarR Norm2 norm1 :: Vector Double -> Double norm1 = toScalarR AbsSum data NormType = Infinity | PNorm1 | PNorm2 -- PNorm Int pnormRV PNorm2 = norm2 pnormRV PNorm1 = norm1 pnormRV Infinity = vectorMax . vectorMapR Abs --pnormRV _ = error "pnormRV not yet defined" pnormCV PNorm2 = norm2 . asReal pnormCV PNorm1 = norm1 . liftVector magnitude pnormCV Infinity = vectorMax . liftVector magnitude --pnormCV _ = error "pnormCV not yet defined" pnormRM PNorm2 m = head (toList s) where (_,s,_) = svdR m pnormRM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (vectorMapR Abs) m pnormRM Infinity m = vectorMax $ liftMatrix (vectorMapR Abs) m `mXv` constant 1 (cols m) --pnormRM _ _ = error "p norm not yet defined" pnormCM PNorm2 m = head (toList s) where (_,s,_) = svdC m pnormCM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (liftVector magnitude) m pnormCM Infinity m = vectorMax $ liftMatrix (liftVector magnitude) m `mXv` constant 1 (cols m) --pnormCM _ _ = error "p norm not yet defined" -- -- | computes the p-norm of a matrix or vector (with the same definitions as GNU-octave). pnorm 0 denotes \\inf-norm. See also 'norm'. --pnorm :: (Container t, GenMat a) => Int -> t a -> Double --pnorm = pnormG class Normed t where pnorm :: NormType -> t -> Double norm :: t -> Double norm = pnorm PNorm2 instance Normed (Vector Double) where pnorm = pnormRV instance Normed (Vector (Complex Double)) where pnorm = pnormCV instance Normed (Matrix Double) where pnorm = pnormRM instance Normed (Matrix (Complex Double)) where pnorm = pnormCM ----------------------------------------------------------------------- -- | The nullspace of a matrix from its SVD decomposition. nullspacePrec :: GenMat t => Double -- ^ relative tolerance in 'eps' units -> Matrix t -- ^ input matrix -> [Vector t] -- ^ list of unitary vectors spanning the nullspace nullspacePrec t m = ns where (_,s,v) = svd m sl@(g:_) = toList s tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) rank = length (filter (> g*tol) sl) -- ns = drop rank (toColumns v) ns = drop rank $ toRows $ ctrans v -- | The nullspace of a matrix, assumed to be one-dimensional, with default tolerance (shortcut for @last . nullspacePrec 1@). nullVector :: GenMat t => Matrix t -> Vector t nullVector = last . nullspacePrec 1 ------------------------------------------------------------------------ {- Pseudoinverse of a real matrix with the desired tolerance, expressed as a multiplicative factor of the default tolerance used by GNU-Octave (see 'pinv'). @\> let m = 'fromLists' [[1,0, 0] ,[0,1, 0] ,[0,0,1e-10]] \ \> 'pinv' m 1. 0. 0. 0. 1. 0. 0. 0. 10000000000. \ \> pinvTol 1E8 m 1. 0. 0. 0. 1. 0. 0. 0. 1.@ -} --pinvTol :: Double -> Matrix Double -> Matrix Double pinvTol t m = v' `mXm` diag s' `mXm` trans u' where (u,s,v) = svdR m sl@(g:_) = toList s s' = fromList . map rec $ sl rec x = if x < g*tol then 1 else 1/x tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) r = rows m c = cols m d = dim s u' = takeColumns d u v' = takeColumns d v