{-# OPTIONS_GHC -fglasgow-exts #-} ----------------------------------------------------------------------------- {- | Module : LinearAlgebra.Algorithms Copyright : (c) Alberto Ruiz 2006-7 License : GPL-style Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : uses ffi -} ----------------------------------------------------------------------------- module LinearAlgebra.Algorithms ( mXv, vXm, inv, pinv, pinvTol, pinvTolg, nullspacePrec, nullVector, Normed(..), NormType(..), det, eps, i ) where import Data.Packed.Internal import Data.Packed.Matrix import GSL.Matrix import GSL.Vector import LAPACK import Complex {- | Machine precision of a Double. >> eps > 2.22044604925031e-16 (The value used by GNU-Octave) -} eps :: Double eps = 2.22044604925031e-16 {- | The imaginary unit @> 'ident' 3 \<\> i 1.i 0. 0. 0. 1.i 0. 0. 0. 1.i@ -} i :: Complex Double i = 0:+1 -- | matrix product mXm :: (Num t, Field t) => Matrix t -> Matrix t -> Matrix t mXm = multiply -- | matrix - vector product mXv :: (Num t, Field t) => Matrix t -> Vector t -> Vector t mXv m v = flatten $ m `mXm` (asColumn v) -- | vector - matrix product vXm :: (Num t, Field t) => Vector t -> Matrix t -> Vector t vXm v m = flatten $ (asRow v) `mXm` m -- | Pseudoinverse of a real matrix -- -- @dispR 3 $ pinv (fromLists [[1,2], -- [3,4], -- [5,6]]) --matrix (2x3) -- -1.333 | -0.333 | 0.667 -- 1.083 | 0.333 | -0.417@ -- pinv :: Matrix Double -> Matrix Double pinv m = pinvTol 1 m --pinv m = linearSolveSVDR Nothing m (ident (rows m)) {- -| Pseudoinverse of a real matrix with the default tolerance used by GNU-Octave: the singular values less than max (rows, colums) * greatest singular value * 'eps' are ignored. See 'pinvTol'. @\> let m = 'fromLists' [[ 1, 2] ,[ 5, 8] ,[10,-5]] \> pinv m 9.353e-3 4.539e-2 7.637e-2 2.231e-2 8.993e-2 -4.719e-2 \ \> m \<\> pinv m \<\> m 1. 2. 5. 8. 10. -5.@ -} --pinvg :: Matrix Double -> Matrix Double pinvg m = pinvTolg 1 m {- | Pseudoinverse of a real matrix with the desired tolerance, expressed as a multiplicative factor of the default tolerance used by GNU-Octave (see 'pinv'). @\> let m = 'fromLists' [[1,0, 0] ,[0,1, 0] ,[0,0,1e-10]] \ \> 'pinv' m 1. 0. 0. 0. 1. 0. 0. 0. 10000000000. \ \> pinvTol 1E8 m 1. 0. 0. 0. 1. 0. 0. 0. 1.@ -} pinvTol :: Double -> Matrix Double -> Matrix Double pinvTol t m = v' `mXm` diag s' `mXm` trans u' where (u,s,v) = svdR' m sl@(g:_) = toList s s' = fromList . map rec $ sl rec x = if x < g*tol then 1 else 1/x tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) r = rows m c = cols m d = dim s u' = takeColumns d u v' = takeColumns d v pinvTolg :: Double -> Matrix Double -> Matrix Double pinvTolg t m = v `mXm` diag s' `mXm` trans u where (u,s,v) = svdg m sl@(g:_) = toList s s' = fromList . map rec $ sl rec x = if x < g*tol then 1 else 1/x tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) {- | Inverse of a square matrix. inv m = 'linearSolveR' m ('ident' ('rows' m)) @\>inv ('fromLists' [[1,4] ,[0,2]]) 1. -2. 0. 0.500@ -} inv :: Matrix Double -> Matrix Double inv m = if rows m == cols m then m `linearSolveR` ident (rows m) else error "inv of nonsquare matrix" {- - | Shortcut for the 2-norm ('pnorm' 2) @ > norm $ 'hilb' 5 1.5670506910982311 @ @\> norm $ 'fromList' [1,-1,'i',-'i'] 2.0@ -} {- | Determinant of a square matrix, computed from the LU decomposition. @\> det ('fromLists' [[7,2],[3,8]]) 50.0@ -} det :: Matrix Double -> Double det m = s * (product $ toList $ takeDiag $ u) where (_,u,_,s) = luR m --------------------------------------------------------------------------- norm2 :: Vector Double -> Double norm2 = toScalarR Norm2 norm1 :: Vector Double -> Double norm1 = toScalarR AbsSum vectorMax :: Vector Double -> Double vectorMax = toScalarR Max vectorMin :: Vector Double -> Double vectorMin = toScalarR Min vectorMaxIndex :: Vector Double -> Int vectorMaxIndex = round . toScalarR MaxIdx vectorMinIndex :: Vector Double -> Int vectorMinIndex = round . toScalarR MinIdx data NormType = Infinity | PNorm1 | PNorm2 -- PNorm Int pnormRV PNorm2 = norm2 pnormRV PNorm1 = norm1 pnormRV Infinity = vectorMax . vectorMapR Abs --pnormRV _ = error "pnormRV not yet defined" pnormCV PNorm2 = norm2 . asReal pnormCV PNorm1 = norm1 . liftVector magnitude pnormCV Infinity = vectorMax . liftVector magnitude --pnormCV _ = error "pnormCV not yet defined" pnormRM PNorm2 m = head (toList s) where (_,s,_) = svdR' m pnormRM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (vectorMapR Abs) m pnormRM Infinity m = vectorMax $ liftMatrix (vectorMapR Abs) m `mXv` constant 1 (cols m) --pnormRM _ _ = error "p norm not yet defined" pnormCM PNorm2 m = head (toList s) where (_,s,_) = svdC' m pnormCM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (liftVector magnitude) m pnormCM Infinity m = vectorMax $ liftMatrix (liftVector magnitude) m `mXv` constant 1 (cols m) --pnormCM _ _ = error "p norm not yet defined" -- -- | computes the p-norm of a matrix or vector (with the same definitions as GNU-octave). pnorm 0 denotes \\inf-norm. See also 'norm'. --pnorm :: (Container t, Field a) => Int -> t a -> Double --pnorm = pnormG class Normed t where pnorm :: NormType -> t -> Double norm :: t -> Double norm = pnorm PNorm2 instance Normed (Vector Double) where pnorm = pnormRV instance Normed (Vector (Complex Double)) where pnorm = pnormCV instance Normed (Matrix Double) where pnorm = pnormRM instance Normed (Matrix (Complex Double)) where pnorm = pnormCM ----------------------------------------------------------------------- -- | The nullspace of a real matrix from its SVD decomposition. nullspacePrec :: Double -- ^ relative tolerance in 'eps' units -> Matrix Double -- ^ input matrix -> [Vector Double] -- ^ list of unitary vectors spanning the nullspace nullspacePrec t m = ns where (_,s,v) = svdR' m sl@(g:_) = toList s tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps) rank = length (filter (> g*tol) sl) ns = drop rank (toColumns v) -- | The nullspace of a real matrix, assumed to be one-dimensional, with default tolerance (shortcut for @last . nullspacePrec 1@). nullVector :: Matrix Double -> Vector Double nullVector = last . nullspacePrec 1