{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE UndecidableInstances #-} #ifndef NOPOLYKINDS {-# LANGUAGE PolyKinds #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Numeric.ContainerBoot -- Copyright : (c) Alberto Ruiz 2010 -- License : GPL-style -- -- Maintainer : Alberto Ruiz -- Stability : provisional -- Portability : portable -- -- Module to avoid cyclyc dependencies. -- ----------------------------------------------------------------------------- module Numeric.ContainerBoot ( -- * Basic functions ident, diag, ctrans, -- * Generic operations Container(..), -- * Matrix product and related functions Product(..), mXm,mXv,vXm, outer, kronecker, -- * Element conversion Convert(..), Complexable(), RealElement(), RealOf, ComplexOf, SingleOf, DoubleOf, IndexOf, module Data.Complex, -- * Experimental build', konst' ) where import Data.Packed import Data.Packed.ST as ST import Numeric.Conversion import Data.Packed.Internal import Numeric.GSL.Vector import Data.Complex import Control.Monad(ap) import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ) ------------------------------------------------------------------- type family IndexOf c type instance IndexOf Vector = Int type instance IndexOf Matrix = (Int,Int) type family ArgOf c a type instance ArgOf Vector a = a -> a type instance ArgOf Matrix a = a -> a -> a ------------------------------------------------------------------- -- | Basic element-by-element functions for numeric containers class (Complexable c, Fractional e, Element e) => Container c e where -- | create a structure with a single element scalar :: e -> c e -- | complex conjugate conj :: c e -> c e scale :: e -> c e -> c e -- | scale the element by element reciprocal of the object: -- -- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@ scaleRecip :: e -> c e -> c e addConstant :: e -> c e -> c e add :: c e -> c e -> c e sub :: c e -> c e -> c e -- | element by element multiplication mul :: c e -> c e -> c e -- | element by element division divide :: c e -> c e -> c e equal :: c e -> c e -> Bool -- -- element by element inverse tangent arctan2 :: c e -> c e -> c e -- -- | cannot implement instance Functor because of Element class constraint cmap :: (Element b) => (e -> b) -> c e -> c b -- | constant structure of given size konst :: e -> IndexOf c -> c e -- | create a structure using a function -- -- Hilbert matrix of order N: -- -- @hilb n = build (n,n) (\\i j -> 1/(i+j+1))@ build :: IndexOf c -> (ArgOf c e) -> c e --build :: BoundsOf f -> f -> (ContainerOf f) e -- -- | indexing function atIndex :: c e -> IndexOf c -> e -- | index of min element minIndex :: c e -> IndexOf c -- | index of max element maxIndex :: c e -> IndexOf c -- | value of min element minElement :: c e -> e -- | value of max element maxElement :: c e -> e -- the C functions sumX/prodX are twice as fast as using foldVector -- | the sum of elements (faster than using @fold@) sumElements :: c e -> e -- | the product of elements (faster than using @fold@) prodElements :: c e -> e -- | A more efficient implementation of @cmap (\\x -> if x>0 then 1 else 0)@ -- -- @> step $ linspace 5 (-1,1::Double) -- 5 |> [0.0,0.0,0.0,1.0,1.0]@ step :: RealElement e => c e -> c e -- | Element by element version of @case compare a b of {LT -> l; EQ -> e; GT -> g}@. -- -- Arguments with any dimension = 1 are automatically expanded: -- -- @> cond ((1>\<4)[1..]) ((3>\<1)[1..]) 0 100 ((3>\<4)[1..]) :: Matrix Double -- (3><4) -- [ 100.0, 2.0, 3.0, 4.0 -- , 0.0, 100.0, 7.0, 8.0 -- , 0.0, 0.0, 100.0, 12.0 ]@ cond :: RealElement e => c e -- ^ a -> c e -- ^ b -> c e -- ^ l -> c e -- ^ e -> c e -- ^ g -> c e -- ^ result -- | Find index of elements which satisfy a predicate -- -- @> find (>0) (ident 3 :: Matrix Double) -- [(0,0),(1,1),(2,2)]@ find :: (e -> Bool) -> c e -> [IndexOf c] -- | Create a structure from an association list -- -- @> assoc 5 0 [(2,7),(1,3)] :: Vector Double -- 5 |> [0.0,3.0,7.0,0.0,0.0]@ assoc :: IndexOf c -- ^ size -> e -- ^ default value -> [(IndexOf c, e)] -- ^ association list -> c e -- ^ result -- | Modify a structure using an update function -- -- @> accum (ident 5) (+) [((1,1),5),((0,3),3)] :: Matrix Double -- (5><5) -- [ 1.0, 0.0, 0.0, 3.0, 0.0 -- , 0.0, 6.0, 0.0, 0.0, 0.0 -- , 0.0, 0.0, 1.0, 0.0, 0.0 -- , 0.0, 0.0, 0.0, 1.0, 0.0 -- , 0.0, 0.0, 0.0, 0.0, 1.0 ]@ accum :: c e -- ^ initial structure -> (e -> e -> e) -- ^ update function -> [(IndexOf c, e)] -- ^ association list -> c e -- ^ result -------------------------------------------------------------------------- instance Container Vector Float where scale = vectorMapValF Scale scaleRecip = vectorMapValF Recip addConstant = vectorMapValF AddConstant add = vectorZipF Add sub = vectorZipF Sub mul = vectorZipF Mul divide = vectorZipF Div equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0 arctan2 = vectorZipF ATan2 scalar x = fromList [x] konst = constantD build = buildV conj = id cmap = mapVector atIndex = (@>) minIndex = round . toScalarF MinIdx maxIndex = round . toScalarF MaxIdx minElement = toScalarF Min maxElement = toScalarF Max sumElements = sumF prodElements = prodF step = stepF find = findV assoc = assocV accum = accumV cond = condV condF instance Container Vector Double where scale = vectorMapValR Scale scaleRecip = vectorMapValR Recip addConstant = vectorMapValR AddConstant add = vectorZipR Add sub = vectorZipR Sub mul = vectorZipR Mul divide = vectorZipR Div equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0 arctan2 = vectorZipR ATan2 scalar x = fromList [x] konst = constantD build = buildV conj = id cmap = mapVector atIndex = (@>) minIndex = round . toScalarR MinIdx maxIndex = round . toScalarR MaxIdx minElement = toScalarR Min maxElement = toScalarR Max sumElements = sumR prodElements = prodR step = stepD find = findV assoc = assocV accum = accumV cond = condV condD instance Container Vector (Complex Double) where scale = vectorMapValC Scale scaleRecip = vectorMapValC Recip addConstant = vectorMapValC AddConstant add = vectorZipC Add sub = vectorZipC Sub mul = vectorZipC Mul divide = vectorZipC Div equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0 arctan2 = vectorZipC ATan2 scalar x = fromList [x] konst = constantD build = buildV conj = conjugateC cmap = mapVector atIndex = (@>) minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate) maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate) minElement = ap (@>) minIndex maxElement = ap (@>) maxIndex sumElements = sumC prodElements = prodC step = undefined -- cannot match find = findV assoc = assocV accum = accumV cond = undefined -- cannot match instance Container Vector (Complex Float) where scale = vectorMapValQ Scale scaleRecip = vectorMapValQ Recip addConstant = vectorMapValQ AddConstant add = vectorZipQ Add sub = vectorZipQ Sub mul = vectorZipQ Mul divide = vectorZipQ Div equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0 arctan2 = vectorZipQ ATan2 scalar x = fromList [x] konst = constantD build = buildV conj = conjugateQ cmap = mapVector atIndex = (@>) minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate) maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate) minElement = ap (@>) minIndex maxElement = ap (@>) maxIndex sumElements = sumQ prodElements = prodQ step = undefined -- cannot match find = findV assoc = assocV accum = accumV cond = undefined -- cannot match --------------------------------------------------------------- instance (Container Vector a) => Container Matrix a where scale x = liftMatrix (scale x) scaleRecip x = liftMatrix (scaleRecip x) addConstant x = liftMatrix (addConstant x) add = liftMatrix2 add sub = liftMatrix2 sub mul = liftMatrix2 mul divide = liftMatrix2 divide equal a b = cols a == cols b && flatten a `equal` flatten b arctan2 = liftMatrix2 arctan2 scalar x = (1><1) [x] konst v (r,c) = reshape c (konst v (r*c)) build = buildM conj = liftMatrix conj cmap f = liftMatrix (mapVector f) atIndex = (@@>) minIndex m = let (r,c) = (rows m,cols m) i = (minIndex $ flatten m) in (i `div` c,i `mod` c) maxIndex m = let (r,c) = (rows m,cols m) i = (maxIndex $ flatten m) in (i `div` c,i `mod` c) minElement = ap (@@>) minIndex maxElement = ap (@@>) maxIndex sumElements = sumElements . flatten prodElements = prodElements . flatten step = liftMatrix step find = findM assoc = assocM accum = accumM cond = condM ---------------------------------------------------- -- | Matrix product and related functions class Element e => Product e where -- | matrix product multiply :: Matrix e -> Matrix e -> Matrix e -- | dot (inner) product dot :: Vector e -> Vector e -> e -- | sum of absolute value of elements (differs in complex case from @norm1@) absSum :: Vector e -> RealOf e -- | sum of absolute value of elements norm1 :: Vector e -> RealOf e -- | euclidean norm norm2 :: Vector e -> RealOf e -- | element of maximum magnitude normInf :: Vector e -> RealOf e instance Product Float where norm2 = toScalarF Norm2 absSum = toScalarF AbsSum dot = dotF norm1 = toScalarF AbsSum normInf = maxElement . vectorMapF Abs multiply = multiplyF instance Product Double where norm2 = toScalarR Norm2 absSum = toScalarR AbsSum dot = dotR norm1 = toScalarR AbsSum normInf = maxElement . vectorMapR Abs multiply = multiplyR instance Product (Complex Float) where norm2 = toScalarQ Norm2 absSum = toScalarQ AbsSum dot = dotQ norm1 = sumElements . fst . fromComplex . vectorMapQ Abs normInf = maxElement . fst . fromComplex . vectorMapQ Abs multiply = multiplyQ instance Product (Complex Double) where norm2 = toScalarC Norm2 absSum = toScalarC AbsSum dot = dotC norm1 = sumElements . fst . fromComplex . vectorMapC Abs normInf = maxElement . fst . fromComplex . vectorMapC Abs multiply = multiplyC ---------------------------------------------------------- -- synonym for matrix product mXm :: Product t => Matrix t -> Matrix t -> Matrix t mXm = multiply -- matrix - vector product mXv :: Product t => Matrix t -> Vector t -> Vector t mXv m v = flatten $ m `mXm` (asColumn v) -- vector - matrix product vXm :: Product t => Vector t -> Matrix t -> Vector t vXm v m = flatten $ (asRow v) `mXm` m {- | Outer product of two vectors. @\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3] (3><3) [ 5.0, 2.0, 3.0 , 10.0, 4.0, 6.0 , 15.0, 6.0, 9.0 ]@ -} outer :: (Product t) => Vector t -> Vector t -> Matrix t outer u v = asColumn u `multiply` asRow v {- | Kronecker product of two matrices. @m1=(2><3) [ 1.0, 2.0, 0.0 , 0.0, -1.0, 3.0 ] m2=(4><3) [ 1.0, 2.0, 3.0 , 4.0, 5.0, 6.0 , 7.0, 8.0, 9.0 , 10.0, 11.0, 12.0 ]@ @\> kronecker m1 m2 (8><9) [ 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 0.0, 0.0, 0.0 , 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 0.0, 0.0, 0.0 , 7.0, 8.0, 9.0, 14.0, 16.0, 18.0, 0.0, 0.0, 0.0 , 10.0, 11.0, 12.0, 20.0, 22.0, 24.0, 0.0, 0.0, 0.0 , 0.0, 0.0, 0.0, -1.0, -2.0, -3.0, 3.0, 6.0, 9.0 , 0.0, 0.0, 0.0, -4.0, -5.0, -6.0, 12.0, 15.0, 18.0 , 0.0, 0.0, 0.0, -7.0, -8.0, -9.0, 21.0, 24.0, 27.0 , 0.0, 0.0, 0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]@ -} kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t kronecker a b = fromBlocks . splitEvery (cols a) . map (reshape (cols b)) . toRows $ flatten a `outer` flatten b ------------------------------------------------------------------- class Convert t where real :: Container c t => c (RealOf t) -> c t complex :: Container c t => c t -> c (ComplexOf t) single :: Container c t => c t -> c (SingleOf t) double :: Container c t => c t -> c (DoubleOf t) toComplex :: (Container c t, RealElement t) => (c t, c t) -> c (Complex t) fromComplex :: (Container c t, RealElement t) => c (Complex t) -> (c t, c t) instance Convert Double where real = id complex = comp' single = single' double = id toComplex = toComplex' fromComplex = fromComplex' instance Convert Float where real = id complex = comp' single = id double = double' toComplex = toComplex' fromComplex = fromComplex' instance Convert (Complex Double) where real = comp' complex = id single = single' double = id toComplex = toComplex' fromComplex = fromComplex' instance Convert (Complex Float) where real = comp' complex = id single = id double = double' toComplex = toComplex' fromComplex = fromComplex' ------------------------------------------------------------------- type family RealOf x type instance RealOf Double = Double type instance RealOf (Complex Double) = Double type instance RealOf Float = Float type instance RealOf (Complex Float) = Float type family ComplexOf x type instance ComplexOf Double = Complex Double type instance ComplexOf (Complex Double) = Complex Double type instance ComplexOf Float = Complex Float type instance ComplexOf (Complex Float) = Complex Float type family SingleOf x type instance SingleOf Double = Float type instance SingleOf Float = Float type instance SingleOf (Complex a) = Complex (SingleOf a) type family DoubleOf x type instance DoubleOf Double = Double type instance DoubleOf Float = Double type instance DoubleOf (Complex a) = Complex (DoubleOf a) type family ElementOf c type instance ElementOf (Vector a) = a type instance ElementOf (Matrix a) = a ------------------------------------------------------------ class Build f where build' :: BoundsOf f -> f -> ContainerOf f type family BoundsOf x type instance BoundsOf (a->a) = Int type instance BoundsOf (a->a->a) = (Int,Int) type family ContainerOf x type instance ContainerOf (a->a) = Vector a type instance ContainerOf (a->a->a) = Matrix a instance (Element a, Num a) => Build (a->a) where build' = buildV instance (Element a, Num a) => Build (a->a->a) where build' = buildM buildM (rc,cc) f = fromLists [ [f r c | c <- cs] | r <- rs ] where rs = map fromIntegral [0 .. (rc-1)] cs = map fromIntegral [0 .. (cc-1)] buildV n f = fromList [f k | k <- ks] where ks = map fromIntegral [0 .. (n-1)] ---------------------------------------------------- -- experimental class Konst s where konst' :: Element e => e -> s -> ContainerOf' s e type family ContainerOf' x y type instance ContainerOf' Int a = Vector a type instance ContainerOf' (Int,Int) a = Matrix a instance Konst Int where konst' = constantD instance Konst (Int,Int) where konst' k (r,c) = reshape c $ konst' k (r*c) -------------------------------------------------------- -- | conjugate transpose ctrans :: (Container Vector e, Element e) => Matrix e -> Matrix e ctrans = liftMatrix conj . trans -- | Creates a square matrix with a given diagonal. diag :: (Num a, Element a) => Vector a -> Matrix a diag v = diagRect 0 v n n where n = dim v -- | creates the identity matrix of given dimension ident :: (Num a, Element a) => Int -> Matrix a ident n = diag (constantD 1 n) -------------------------------------------------------- findV p x = foldVectorWithIndex g [] x where g k z l = if p z then k:l else l findM p x = map ((`divMod` cols x)) $ findV p (flatten x) assocV n z xs = ST.runSTVector $ do v <- ST.newVector z n mapM_ (\(k,x) -> ST.writeVector v k x) xs return v assocM (r,c) z xs = ST.runSTMatrix $ do m <- ST.newMatrix z r c mapM_ (\((i,j),x) -> ST.writeMatrix m i j x) xs return m accumV v0 f xs = ST.runSTVector $ do v <- ST.thawVector v0 mapM_ (\(k,x) -> ST.modifyVector v k (f x)) xs return v accumM m0 f xs = ST.runSTMatrix $ do m <- ST.thawMatrix m0 mapM_ (\((i,j),x) -> ST.modifyMatrix m i j (f x)) xs return m ---------------------------------------------------------------------- condM a b l e t = reshape (cols a'') $ cond a' b' l' e' t' where args@(a'':_) = conformMs [a,b,l,e,t] [a', b', l', e', t'] = map flatten args condV f a b l e t = f a' b' l' e' t' where [a', b', l', e', t'] = conformVs [a,b,l,e,t]