{-# LANGUAGE FlexibleContexts, FlexibleInstances #-} {-# LANGUAGE CPP #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- {- | Module : Numeric.LinearAlgebra.Algorithms Copyright : (c) Alberto Ruiz 2006-9 License : GPL-style Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : uses ffi High level generic interface to common matrix computations. Specific functions for particular base types can also be explicitly imported from "Numeric.LinearAlgebra.LAPACK". -} ----------------------------------------------------------------------------- module Numeric.LinearAlgebra.Algorithms ( -- * Supported types Field(), -- * Linear Systems linearSolve, luSolve, cholSolve, linearSolveLS, linearSolveSVD, inv, pinv, det, invlndet, rank, rcond, -- * Matrix factorizations -- ** Singular value decomposition svd, fullSVD, thinSVD, compactSVD, singularValues, leftSV, rightSV, -- ** Eigensystems eig, eigSH, eigSH', eigenvalues, eigenvaluesSH, eigenvaluesSH', -- ** QR qr, rq, -- ** Cholesky chol, cholSH, mbCholSH, -- ** Hessenberg hess, -- ** Schur schur, -- ** LU lu, luPacked, -- * Matrix functions expm, sqrtm, matFunc, -- * Nullspace nullspacePrec, nullVector, nullspaceSVD, -- * Norms Normed(..), NormType(..), relativeError, -- * Misc eps, peps, i, -- * Util haussholder, unpackQR, unpackHess, pinvTol, ranksv, full, economy ) where import Data.Packed.Internal hiding ((//)) import Data.Packed.Matrix import Numeric.LinearAlgebra.LAPACK as LAPACK import Data.List(foldl1') import Data.Array import Numeric.ContainerBoot hiding ((.*),(*/)) {- | Class used to define generic linear algebra computations for both real and complex matrices. Only double precision is supported in this version (we can transform single precision objects using 'single' and 'double'). -} class (Product t, Convert t, Container Vector t, Container Matrix t, Normed Matrix t, Normed Vector t) => Field t where svd' :: Matrix t -> (Matrix t, Vector Double, Matrix t) thinSVD' :: Matrix t -> (Matrix t, Vector Double, Matrix t) sv' :: Matrix t -> Vector Double luPacked' :: Matrix t -> (Matrix t, [Int]) luSolve' :: (Matrix t, [Int]) -> Matrix t -> Matrix t linearSolve' :: Matrix t -> Matrix t -> Matrix t cholSolve' :: Matrix t -> Matrix t -> Matrix t linearSolveSVD' :: Matrix t -> Matrix t -> Matrix t linearSolveLS' :: Matrix t -> Matrix t -> Matrix t eig' :: Matrix t -> (Vector (Complex Double), Matrix (Complex Double)) eigSH'' :: Matrix t -> (Vector Double, Matrix t) eigOnly :: Matrix t -> Vector (Complex Double) eigOnlySH :: Matrix t -> Vector Double cholSH' :: Matrix t -> Matrix t mbCholSH' :: Matrix t -> Maybe (Matrix t) qr' :: Matrix t -> (Matrix t, Matrix t) hess' :: Matrix t -> (Matrix t, Matrix t) schur' :: Matrix t -> (Matrix t, Matrix t) instance Field Double where svd' = svdRd thinSVD' = thinSVDRd sv' = svR luPacked' = luR luSolve' (l_u,perm) = lusR l_u perm linearSolve' = linearSolveR -- (luSolve . luPacked) ?? cholSolve' = cholSolveR linearSolveLS' = linearSolveLSR linearSolveSVD' = linearSolveSVDR Nothing eig' = eigR eigSH'' = eigS eigOnly = eigOnlyR eigOnlySH = eigOnlyS cholSH' = cholS mbCholSH' = mbCholS qr' = unpackQR . qrR hess' = unpackHess hessR schur' = schurR instance Field (Complex Double) where #ifdef NOZGESDD svd' = svdC thinSVD' = thinSVDC #else svd' = svdCd thinSVD' = thinSVDCd #endif sv' = svC luPacked' = luC luSolve' (l_u,perm) = lusC l_u perm linearSolve' = linearSolveC cholSolve' = cholSolveC linearSolveLS' = linearSolveLSC linearSolveSVD' = linearSolveSVDC Nothing eig' = eigC eigOnly = eigOnlyC eigSH'' = eigH eigOnlySH = eigOnlyH cholSH' = cholH mbCholSH' = mbCholH qr' = unpackQR . qrC hess' = unpackHess hessC schur' = schurC -------------------------------------------------------------- square m = rows m == cols m vertical m = rows m >= cols m exactHermitian m = m `equal` ctrans m shSize m = "(" ++ show (rows m) ++"><"++ show (cols m)++")" -------------------------------------------------------------- -- | Full singular value decomposition. svd :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) svd = {-# SCC "svd" #-} svd' -- | A version of 'svd' which returns only the @min (rows m) (cols m)@ singular vectors of @m@. -- -- If @(u,s,v) = thinSVD m@ then @m == u \<> diag s \<> trans v@. thinSVD :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) thinSVD = {-# SCC "thinSVD" #-} thinSVD' -- | Singular values only. singularValues :: Field t => Matrix t -> Vector Double singularValues = {-# SCC "singularValues" #-} sv' -- | A version of 'svd' which returns an appropriate diagonal matrix with the singular values. -- -- If @(u,d,v) = fullSVD m@ then @m == u \<> d \<> trans v@. fullSVD :: Field t => Matrix t -> (Matrix t, Matrix Double, Matrix t) fullSVD m = (u,d,v) where (u,s,v) = svd m d = diagRect 0 s r c r = rows m c = cols m -- | Similar to 'thinSVD', returning only the nonzero singular values and the corresponding singular vectors. compactSVD :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t) compactSVD m = (u', subVector 0 d s, v') where (u,s,v) = thinSVD m d = rankSVD (1*eps) m s `max` 1 u' = takeColumns d u v' = takeColumns d v -- | Singular values and all right singular vectors. rightSV :: Field t => Matrix t -> (Vector Double, Matrix t) rightSV m | vertical m = let (_,s,v) = thinSVD m in (s,v) | otherwise = let (_,s,v) = svd m in (s,v) -- | Singular values and all right singular vectors. leftSV :: Field t => Matrix t -> (Matrix t, Vector Double) leftSV m | vertical m = let (u,s,_) = svd m in (u,s) | otherwise = let (u,s,_) = thinSVD m in (u,s) {-# DEPRECATED full "use fullSVD instead" #-} full svdFun m = (u, d ,v) where (u,s,v) = svdFun m d = diagRect 0 s r c r = rows m c = cols m {-# DEPRECATED economy "use compactSVD instead" #-} economy svdFun m = (u', subVector 0 d s, v') where (u,s,v) = svdFun m d = rankSVD (1*eps) m s `max` 1 u' = takeColumns d u v' = takeColumns d v -------------------------------------------------------------- -- | Obtains the LU decomposition of a matrix in a compact data structure suitable for 'luSolve'. luPacked :: Field t => Matrix t -> (Matrix t, [Int]) luPacked = {-# SCC "luPacked" #-} luPacked' -- | Solution of a linear system (for several right hand sides) from the precomputed LU factorization obtained by 'luPacked'. luSolve :: Field t => (Matrix t, [Int]) -> Matrix t -> Matrix t luSolve = {-# SCC "luSolve" #-} luSolve' -- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'. -- It is similar to 'luSolve' . 'luPacked', but @linearSolve@ raises an error if called on a singular system. linearSolve :: Field t => Matrix t -> Matrix t -> Matrix t linearSolve = {-# SCC "linearSolve" #-} linearSolve' -- | Solve a symmetric or Hermitian positive definite linear system using a precomputed Cholesky decomposition obtained by 'chol'. cholSolve :: Field t => Matrix t -> Matrix t -> Matrix t cholSolve = {-# SCC "cholSolve" #-} cholSolve' -- | Minimum norm solution of a general linear least squares problem Ax=B using the SVD. Admits rank-deficient systems but it is slower than 'linearSolveLS'. The effective rank of A is determined by treating as zero those singular valures which are less than 'eps' times the largest singular value. linearSolveSVD :: Field t => Matrix t -> Matrix t -> Matrix t linearSolveSVD = {-# SCC "linearSolveSVD" #-} linearSolveSVD' -- | Least squared error solution of an overconstrained linear system, or the minimum norm solution of an underconstrained system. For rank-deficient systems use 'linearSolveSVD'. linearSolveLS :: Field t => Matrix t -> Matrix t -> Matrix t linearSolveLS = {-# SCC "linearSolveLS" #-} linearSolveLS' -------------------------------------------------------------- -- | Eigenvalues and eigenvectors of a general square matrix. -- -- If @(s,v) = eig m@ then @m \<> v == v \<> diag s@ eig :: Field t => Matrix t -> (Vector (Complex Double), Matrix (Complex Double)) eig = {-# SCC "eig" #-} eig' -- | Eigenvalues of a general square matrix. eigenvalues :: Field t => Matrix t -> Vector (Complex Double) eigenvalues = {-# SCC "eigenvalues" #-} eigOnly -- | Similar to 'eigSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. eigSH' :: Field t => Matrix t -> (Vector Double, Matrix t) eigSH' = {-# SCC "eigSH'" #-} eigSH'' -- | Similar to 'eigenvaluesSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. eigenvaluesSH' :: Field t => Matrix t -> Vector Double eigenvaluesSH' = {-# SCC "eigenvaluesSH'" #-} eigOnlySH -- | Eigenvalues and Eigenvectors of a complex hermitian or real symmetric matrix. -- -- If @(s,v) = eigSH m@ then @m == v \<> diag s \<> ctrans v@ eigSH :: Field t => Matrix t -> (Vector Double, Matrix t) eigSH m | exactHermitian m = eigSH' m | otherwise = error "eigSH requires complex hermitian or real symmetric matrix" -- | Eigenvalues of a complex hermitian or real symmetric matrix. eigenvaluesSH :: Field t => Matrix t -> Vector Double eigenvaluesSH m | exactHermitian m = eigenvaluesSH' m | otherwise = error "eigenvaluesSH requires complex hermitian or real symmetric matrix" -------------------------------------------------------------- -- | QR factorization. -- -- If @(q,r) = qr m@ then @m == q \<> r@, where q is unitary and r is upper triangular. qr :: Field t => Matrix t -> (Matrix t, Matrix t) qr = {-# SCC "qr" #-} qr' -- | RQ factorization. -- -- If @(r,q) = rq m@ then @m == r \<> q@, where q is unitary and r is upper triangular. rq :: Field t => Matrix t -> (Matrix t, Matrix t) rq m = {-# SCC "rq" #-} (r,q) where (q',r') = qr $ trans $ rev1 m r = rev2 (trans r') q = rev2 (trans q') rev1 = flipud . fliprl rev2 = fliprl . flipud -- | Hessenberg factorization. -- -- If @(p,h) = hess m@ then @m == p \<> h \<> ctrans p@, where p is unitary -- and h is in upper Hessenberg form (it has zero entries below the first subdiagonal). hess :: Field t => Matrix t -> (Matrix t, Matrix t) hess = hess' -- | Schur factorization. -- -- If @(u,s) = schur m@ then @m == u \<> s \<> ctrans u@, where u is unitary -- and s is a Shur matrix. A complex Schur matrix is upper triangular. A real Schur matrix is -- upper triangular in 2x2 blocks. -- -- \"Anything that the Jordan decomposition can do, the Schur decomposition -- can do better!\" (Van Loan) schur :: Field t => Matrix t -> (Matrix t, Matrix t) schur = schur' -- | Similar to 'cholSH', but instead of an error (e.g., caused by a matrix not positive definite) it returns 'Nothing'. mbCholSH :: Field t => Matrix t -> Maybe (Matrix t) mbCholSH = {-# SCC "mbCholSH" #-} mbCholSH' -- | Similar to 'chol', without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part. cholSH :: Field t => Matrix t -> Matrix t cholSH = {-# SCC "cholSH" #-} cholSH' -- | Cholesky factorization of a positive definite hermitian or symmetric matrix. -- -- If @c = chol m@ then @c@ is upper triangular and @m == ctrans c \<> c@. chol :: Field t => Matrix t -> Matrix t chol m | exactHermitian m = cholSH m | otherwise = error "chol requires positive definite complex hermitian or real symmetric matrix" -- | Joint computation of inverse and logarithm of determinant of a square matrix. invlndet :: (Floating t, Field t) => Matrix t -> (Matrix t, (t, t)) -- ^ (inverse, (log abs det, sign or phase of det)) invlndet m | square m = (im,(ladm,sdm)) | otherwise = error $ "invlndet of nonsquare "++ shSize m ++ " matrix" where lp@(lup,perm) = luPacked m s = signlp (rows m) perm dg = toList $ takeDiag $ lup ladm = sum $ map (log.abs) dg sdm = s* product (map signum dg) im = luSolve lp (ident (rows m)) -- | Determinant of a square matrix. To avoid possible overflow or underflow use 'invlndet'. det :: Field t => Matrix t -> t det m | square m = {-# SCC "det" #-} s * (product $ toList $ takeDiag $ lup) | otherwise = error $ "det of nonsquare "++ shSize m ++ " matrix" where (lup,perm) = luPacked m s = signlp (rows m) perm -- | Explicit LU factorization of a general matrix. -- -- If @(l,u,p,s) = lu m@ then @m == p \<> l \<> u@, where l is lower triangular, -- u is upper triangular, p is a permutation matrix and s is the signature of the permutation. lu :: Field t => Matrix t -> (Matrix t, Matrix t, Matrix t, t) lu = luFact . luPacked -- | Inverse of a square matrix. See also 'invlndet'. inv :: Field t => Matrix t -> Matrix t inv m | square m = m `linearSolve` ident (rows m) | otherwise = error $ "inv of nonsquare "++ shSize m ++ " matrix" -- | Pseudoinverse of a general matrix. pinv :: Field t => Matrix t -> Matrix t pinv m = linearSolveSVD m (ident (rows m)) -- | Numeric rank of a matrix from the SVD decomposition. rankSVD :: Element t => Double -- ^ numeric zero (e.g. 1*'eps') -> Matrix t -- ^ input matrix m -> Vector Double -- ^ 'sv' of m -> Int -- ^ rank of m rankSVD teps m s = ranksv teps (max (rows m) (cols m)) (toList s) -- | Numeric rank of a matrix from its singular values. ranksv :: Double -- ^ numeric zero (e.g. 1*'eps') -> Int -- ^ maximum dimension of the matrix -> [Double] -- ^ singular values -> Int -- ^ rank of m ranksv teps maxdim s = k where g = maximum s tol = fromIntegral maxdim * g * teps s' = filter (>tol) s k = if g > teps then length s' else 0 -- | The machine precision of a Double: @eps = 2.22044604925031e-16@ (the value used by GNU-Octave). eps :: Double eps = 2.22044604925031e-16 -- | 1 + 0.5*peps == 1, 1 + 0.6*peps /= 1 peps :: RealFloat x => x peps = x where x = 2.0 ** fromIntegral (1 - floatDigits x) -- | The imaginary unit: @i = 0.0 :+ 1.0@ i :: Complex Double i = 0:+1 ----------------------------------------------------------------------- -- | The nullspace of a matrix from its SVD decomposition. nullspaceSVD :: Field t => Either Double Int -- ^ Left \"numeric\" zero (eg. 1*'eps'), -- or Right \"theoretical\" matrix rank. -> Matrix t -- ^ input matrix m -> (Vector Double, Matrix t) -- ^ 'rightSV' of m -> [Vector t] -- ^ list of unitary vectors spanning the nullspace nullspaceSVD hint a (s,v) = vs where tol = case hint of Left t -> t _ -> eps k = case hint of Right t -> t _ -> rankSVD tol a s vs = drop k $ toRows $ ctrans v -- | The nullspace of a matrix. See also 'nullspaceSVD'. nullspacePrec :: Field t => Double -- ^ relative tolerance in 'eps' units (e.g., use 3 to get 3*'eps') -> Matrix t -- ^ input matrix -> [Vector t] -- ^ list of unitary vectors spanning the nullspace nullspacePrec t m = nullspaceSVD (Left (t*eps)) m (rightSV m) -- | The nullspace of a matrix, assumed to be one-dimensional, with machine precision. nullVector :: Field t => Matrix t -> Vector t nullVector = last . nullspacePrec 1 ------------------------------------------------------------------------ {- Pseudoinverse of a real matrix with the desired tolerance, expressed as a multiplicative factor of the default tolerance used by GNU-Octave (see 'pinv'). @\> let m = 'fromLists' [[1,0, 0] ,[0,1, 0] ,[0,0,1e-10]] \ -- \> 'pinv' m 1. 0. 0. 0. 1. 0. 0. 0. 10000000000. \ -- \> pinvTol 1E8 m 1. 0. 0. 0. 1. 0. 0. 0. 1.@ -} --pinvTol :: Double -> Matrix Double -> Matrix Double pinvTol t m = v' `mXm` diag s' `mXm` trans u' where (u,s,v) = thinSVDRd m sl@(g:_) = toList s s' = fromList . map rec $ sl rec x = if x < g*tol then 1 else 1/x tol = (fromIntegral (max r c) * g * t * eps) r = rows m c = cols m d = dim s u' = takeColumns d u v' = takeColumns d v --------------------------------------------------------------------- -- many thanks, quickcheck! haussholder :: (Field a) => a -> Vector a -> Matrix a haussholder tau v = ident (dim v) `sub` (tau `scale` (w `mXm` ctrans w)) where w = asColumn v zh k v = fromList $ replicate (k-1) 0 ++ (1:drop k xs) where xs = toList v zt 0 v = v zt k v = join [subVector 0 (dim v - k) v, konst 0 k] unpackQR :: (Field t) => (Matrix t, Vector t) -> (Matrix t, Matrix t) unpackQR (pq, tau) = {-# SCC "unpackQR" #-} (q,r) where cs = toColumns pq m = rows pq n = cols pq mn = min m n r = fromColumns $ zipWith zt ([m-1, m-2 .. 1] ++ repeat 0) cs vs = zipWith zh [1..mn] cs hs = zipWith haussholder (toList tau) vs q = foldl1' mXm hs unpackHess :: (Field t) => (Matrix t -> (Matrix t,Vector t)) -> Matrix t -> (Matrix t, Matrix t) unpackHess hf m | rows m == 1 = ((1><1)[1],m) | otherwise = (uH . hf) m uH (pq, tau) = (p,h) where cs = toColumns pq m = rows pq n = cols pq mn = min m n h = fromColumns $ zipWith zt ([m-2, m-3 .. 1] ++ repeat 0) cs vs = zipWith zh [2..mn] cs hs = zipWith haussholder (toList tau) vs p = foldl1' mXm hs -------------------------------------------------------------------------- -- | Reciprocal of the 2-norm condition number of a matrix, computed from the singular values. rcond :: Field t => Matrix t -> Double rcond m = last s / head s where s = toList (singularValues m) -- | Number of linearly independent rows or columns. rank :: Field t => Matrix t -> Int rank m = rankSVD eps m (singularValues m) {- expm' m = case diagonalize (complex m) of Just (l,v) -> v `mXm` diag (exp l) `mXm` inv v Nothing -> error "Sorry, expm not yet implemented for non-diagonalizable matrices" where exp = vectorMapC Exp -} diagonalize m = if rank v == n then Just (l,v) else Nothing where n = rows m (l,v) = if exactHermitian m then let (l',v') = eigSH m in (real l', v') else eig m -- | Generic matrix functions for diagonalizable matrices. For instance: -- -- @logm = matFunc log@ -- matFunc :: (Complex Double -> Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double) matFunc f m = case diagonalize m of Just (l,v) -> v `mXm` diag (mapVector f l) `mXm` inv v Nothing -> error "Sorry, matFunc requires a diagonalizable matrix" -------------------------------------------------------------- golubeps :: Integer -> Integer -> Double golubeps p q = a * fromIntegral b / fromIntegral c where a = 2^^(3-p-q) b = fact p * fact q c = fact (p+q) * fact (p+q+1) fact n = product [1..n] epslist = [ (fromIntegral k, golubeps k k) | k <- [1..]] geps delta = head [ k | (k,g) <- epslist, g x n' = n |+| (c' .* x') d' = d |+| (((-1)^k * c') .* x') (_,_,_,nf,df) = iterate work (1,1,eye,eye,eye) !! q f = linearSolve df nf msq x = x <> x (<>) = multiply v */ x = scale (recip x) v (.*) = scale (|+|) = add {- | Matrix exponential. It uses a direct translation of Algorithm 11.3.1 in Golub & Van Loan, based on a scaled Pade approximation. -} expm :: Field t => Matrix t -> Matrix t expm = expGolub -------------------------------------------------------------- {- | Matrix square root. Currently it uses a simple iterative algorithm described in Wikipedia. It only works with invertible matrices that have a real solution. For diagonalizable matrices you can try @matFunc sqrt@. @m = (2><2) [4,9 ,0,4] :: Matrix Double@ @\>sqrtm m (2><2) [ 2.0, 2.25 , 0.0, 2.0 ]@ -} sqrtm :: Field t => Matrix t -> Matrix t sqrtm = sqrtmInv sqrtmInv x = fst $ fixedPoint $ iterate f (x, ident (rows x)) where fixedPoint (a:b:rest) | pnorm PNorm1 (fst a |-| fst b) < peps = a | otherwise = fixedPoint (b:rest) fixedPoint _ = error "fixedpoint with impossible inputs" f (y,z) = (0.5 .* (y |+| inv z), 0.5 .* (inv y |+| z)) (.*) = scale (|+|) = add (|-|) = sub ------------------------------------------------------------------ signlp r vals = foldl f 1 (zip [0..r-1] vals) where f s (a,b) | a /= b = -s | otherwise = s swap (arr,s) (a,b) | a /= b = (arr // [(a, arr!b),(b,arr!a)],-s) | otherwise = (arr,s) fixPerm r vals = (fromColumns $ elems res, sign) where v = [0..r-1] s = toColumns (ident r) (res,sign) = foldl swap (listArray (0,r-1) s, 1) (zip v vals) triang r c h v = (r>=h then v else 1 - v luFact (l_u,perm) | r <= c = (l ,u ,p, s) | otherwise = (l',u',p, s) where r = rows l_u c = cols l_u tu = triang r c 0 1 tl = triang r c 0 0 l = takeColumns r (l_u |*| tl) |+| diagRect 0 (konst 1 r) r r u = l_u |*| tu (p,s) = fixPerm r perm l' = (l_u |*| tl) |+| diagRect 0 (konst 1 c) r c u' = takeRows c (l_u |*| tu) (|+|) = add (|*|) = mul --------------------------------------------------------------------------- data NormType = Infinity | PNorm1 | PNorm2 | Frobenius class (RealFloat (RealOf t)) => Normed c t where pnorm :: NormType -> c t -> RealOf t instance Normed Vector Double where pnorm PNorm1 = norm1 pnorm PNorm2 = norm2 pnorm Infinity = normInf pnorm Frobenius = norm2 instance Normed Vector (Complex Double) where pnorm PNorm1 = norm1 pnorm PNorm2 = norm2 pnorm Infinity = normInf pnorm Frobenius = pnorm PNorm2 instance Normed Vector Float where pnorm PNorm1 = norm1 pnorm PNorm2 = norm2 pnorm Infinity = normInf pnorm Frobenius = pnorm PNorm2 instance Normed Vector (Complex Float) where pnorm PNorm1 = norm1 pnorm PNorm2 = norm2 pnorm Infinity = normInf pnorm Frobenius = pnorm PNorm2 instance Normed Matrix Double where pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns pnorm PNorm2 = (@>0) . singularValues pnorm Infinity = pnorm PNorm1 . trans pnorm Frobenius = pnorm PNorm2 . flatten instance Normed Matrix (Complex Double) where pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns pnorm PNorm2 = (@>0) . singularValues pnorm Infinity = pnorm PNorm1 . trans pnorm Frobenius = pnorm PNorm2 . flatten instance Normed Matrix Float where pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns pnorm PNorm2 = realToFrac . (@>0) . singularValues . double pnorm Infinity = pnorm PNorm1 . trans pnorm Frobenius = pnorm PNorm2 . flatten instance Normed Matrix (Complex Float) where pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns pnorm PNorm2 = realToFrac . (@>0) . singularValues . double pnorm Infinity = pnorm PNorm1 . trans pnorm Frobenius = pnorm PNorm2 . flatten -- | Approximate number of common digits in the maximum element. relativeError :: (Normed c t, Container c t) => c t -> c t -> Int relativeError x y = dig (norm (x `sub` y) / norm x) where norm = pnorm Infinity dig r = round $ -logBase 10 (realToFrac r :: Double)