{-# LANGUAGE UndecidableInstances, FlexibleInstances #-} ----------------------------------------------------------------------------- {- | Module : Numeric.LinearAlgebra.Instances Copyright : (c) Alberto Ruiz 2006 License : GPL-style Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : portable This module exports Show, Read, Eq, Num, Fractional, and Floating instances for Vector and Matrix. In the context of the standard numeric operators, one-component vectors and matrices automatically expand to match the dimensions of the other operand. -} ----------------------------------------------------------------------------- module Numeric.LinearAlgebra.Instances( ) where import Numeric.LinearAlgebra.Linear import Numeric.GSL.Vector import Data.Packed.Matrix import Complex import Data.List(transpose,intersperse) import Foreign(Storable) import Data.Monoid import Data.Packed.Internal.Vector -- import Control.Parallel.Strategies ------------------------------------------------------------------ instance (Show a, Element a) => (Show (Matrix a)) where show m = (sizes++) . dsp . map (map show) . toLists $ m where sizes = "("++show (rows m)++"><"++show (cols m)++")\n" dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp where mt = transpose as longs = map (maximum . map length) mt mtp = zipWith (\a b -> map (pad a) b) longs mt pad n str = replicate (n - length str) ' ' ++ str unwords' = concat . intersperse ", " instance (Show a, Storable a) => (Show (Vector a)) where show v = (show (dim v))++" |> " ++ show (toList v) ------------------------------------------------------------------ instance (Element a, Read a) => Read (Matrix a) where readsPrec _ s = [((rs>' $ dims instance (Element a, Read a) => Read (Vector a) where readsPrec _ s = [((d |>) . read $ listnums, rest)] where (thing,rest) = breakAt ']' s (dims,listnums) = breakAt '>' thing d = read . init . fst . breakAt '|' $ dims breakAt c l = (a++[c],tail b) where (a,b) = break (==c) l ------------------------------------------------------------------ adaptScalar f1 f2 f3 x y | dim x == 1 = f1 (x@>0) y | dim y == 1 = f3 x (y@>0) | otherwise = f2 x y liftMatrix2' :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t liftMatrix2' f m1 m2 | compat' m1 m2 = lM f m1 m2 | rows m1 == rows m2 && cols m2 == 1 = lM f m1 (repCols (cols m1) m2) | rows m1 == rows m2 && cols m1 == 1 = lM f (repCols (cols m2) m1) m2 | cols m1 == cols m2 && rows m2 == 1 = lM f m1 (repRows (rows m1) m2) | cols m1 == cols m2 && cols m1 == 1 = lM f (repRows (rows m2) m1) m2 | rows m1 == 1 && cols m2 == 1 = lM f (repRows (rows m2) m1) (repCols (cols m1) m2) | cols m1 == 1 && rows m2 == 1 = lM f (repCols (cols m2) m1) (repRows (rows m1) m2) | otherwise = error "nonconformable matrices in liftMatrix2'" lM f m1 m2 = reshape (max (cols m1) (cols m2)) (f (flatten m1) (flatten m2)) repRows n x = fromRows (replicate n (flatten x)) repCols n x = fromColumns (replicate n (flatten x)) compat' :: Matrix a -> Matrix b -> Bool compat' m1 m2 = rows m1 == 1 && cols m1 == 1 || rows m2 == 1 && cols m2 == 1 || rows m1 == rows m2 && cols m1 == cols m2 instance Linear Vector a => Eq (Vector a) where (==) = equal instance Num (Vector Double) where (+) = adaptScalar addConstant add (flip addConstant) negate = scale (-1) (*) = adaptScalar scale mul (flip scale) signum = vectorMapR Sign abs = vectorMapR Abs fromInteger = fromList . return . fromInteger instance Num (Vector (Complex Double)) where (+) = adaptScalar addConstant add (flip addConstant) negate = scale (-1) (*) = adaptScalar scale mul (flip scale) signum = vectorMapC Sign abs = vectorMapC Abs fromInteger = fromList . return . fromInteger instance Linear Matrix a => Eq (Matrix a) where (==) = equal instance (Linear Matrix a, Num (Vector a)) => Num (Matrix a) where (+) = liftMatrix2' (+) (-) = liftMatrix2' (-) negate = liftMatrix negate (*) = liftMatrix2' (*) signum = liftMatrix signum abs = liftMatrix abs fromInteger = (1><1) . return . fromInteger --------------------------------------------------- instance (Linear Vector a, Num (Vector a)) => Fractional (Vector a) where fromRational n = fromList [fromRational n] (/) = adaptScalar f divide g where r `f` v = scaleRecip r v v `g` r = scale (recip r) v ------------------------------------------------------- instance (Linear Vector a, Fractional (Vector a), Num (Matrix a)) => Fractional (Matrix a) where fromRational n = (1><1) [fromRational n] (/) = liftMatrix2' (/) --------------------------------------------------------- instance Floating (Vector Double) where sin = vectorMapR Sin cos = vectorMapR Cos tan = vectorMapR Tan asin = vectorMapR ASin acos = vectorMapR ACos atan = vectorMapR ATan sinh = vectorMapR Sinh cosh = vectorMapR Cosh tanh = vectorMapR Tanh asinh = vectorMapR ASinh acosh = vectorMapR ACosh atanh = vectorMapR ATanh exp = vectorMapR Exp log = vectorMapR Log sqrt = vectorMapR Sqrt (**) = adaptScalar (vectorMapValR PowSV) (vectorZipR Pow) (flip (vectorMapValR PowVS)) pi = fromList [pi] ------------------------------------------------------------- instance Floating (Vector (Complex Double)) where sin = vectorMapC Sin cos = vectorMapC Cos tan = vectorMapC Tan asin = vectorMapC ASin acos = vectorMapC ACos atan = vectorMapC ATan sinh = vectorMapC Sinh cosh = vectorMapC Cosh tanh = vectorMapC Tanh asinh = vectorMapC ASinh acosh = vectorMapC ACosh atanh = vectorMapC ATanh exp = vectorMapC Exp log = vectorMapC Log sqrt = vectorMapC Sqrt (**) = adaptScalar (vectorMapValC PowSV) (vectorZipC Pow) (flip (vectorMapValC PowVS)) pi = fromList [pi] ----------------------------------------------------------- instance (Linear Vector a, Floating (Vector a), Fractional (Matrix a)) => Floating (Matrix a) where sin = liftMatrix sin cos = liftMatrix cos tan = liftMatrix tan asin = liftMatrix asin acos = liftMatrix acos atan = liftMatrix atan sinh = liftMatrix sinh cosh = liftMatrix cosh tanh = liftMatrix tanh asinh = liftMatrix asinh acosh = liftMatrix acosh atanh = liftMatrix atanh exp = liftMatrix exp log = liftMatrix log (**) = liftMatrix2' (**) sqrt = liftMatrix sqrt pi = (1><1) [pi] --------------------------------------------------------------- instance (Storable a, Num (Vector a)) => Monoid (Vector a) where mempty = 0 { idim = 0 } mappend a b = mconcat [a,b] mconcat = j . filter ((>0).dim) where j [] = mempty j l = join l --------------------------------------------------------------- -- instance (NFData a, Storable a) => NFData (Vector a) where -- rnf = rnf . (@>0) -- -- instance (NFData a, Element a) => NFData (Matrix a) where -- rnf = rnf . flatten