{-# OPTIONS_GHC #-} ----------------------------------------------------------------------------- -- | -- Module : Numeric.LinearAlgebra.LAPACK -- Copyright : (c) Alberto Ruiz 2006-7 -- License : GPL-style -- -- Maintainer : Alberto Ruiz (aruiz at um dot es) -- Stability : provisional -- Portability : portable (uses FFI) -- -- Wrappers for a few LAPACK functions (). -- ----------------------------------------------------------------------------- module Numeric.LinearAlgebra.LAPACK ( svdR, svdRdd, svdC, eigC, eigR, eigS, eigH, eigS', eigH', linearSolveR, linearSolveC, linearSolveLSR, linearSolveLSC, linearSolveSVDR, linearSolveSVDC, luR, luC, lusR, lusC, cholS, cholH, qrR, qrC, hessR, hessC, schurR, schurC ) where import Data.Packed.Internal import Data.Packed.Internal.Vector import Data.Packed.Internal.Matrix import Data.Packed.Vector import Data.Packed.Matrix import Numeric.GSL.Vector(vectorMapValR, FunCodeSV(Scale)) import Complex import Foreign import Foreign.C.Types (CInt) ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h svd_l_R" dgesvd :: TMMVM foreign import ccall "LAPACK/lapack-aux.h svd_l_C" zgesvd :: TCMCMVCM foreign import ccall "LAPACK/lapack-aux.h svd_l_Rdd" dgesdd :: TMMVM -- | Wrapper for LAPACK's /dgesvd/, which computes the full svd decomposition of a real matrix. -- -- @(u,s,v)=full svdR m@ so that @m=u \<\> s \<\> 'trans' v@. svdR :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double) svdR = svdAux dgesvd "svdR" . fmat -- | Wrapper for LAPACK's /dgesvd/, which computes the full svd decomposition of a real matrix. -- -- @(u,s,v)=full svdRdd m@ so that @m=u \<\> s \<\> 'trans' v@. svdRdd :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double) svdRdd = svdAux dgesdd "svdRdd" . fmat -- | Wrapper for LAPACK's /zgesvd/, which computes the full svd decomposition of a complex matrix. -- -- @(u,s,v)=full svdC m@ so that @m=u \<\> comp s \<\> 'trans' v@. svdC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector Double, Matrix (Complex Double)) svdC = svdAux zgesvd "svdC" . fmat svdAux f st x = unsafePerformIO $ do u <- createMatrix ColumnMajor r r s <- createVector (min r c) v <- createMatrix ColumnMajor c c app4 f mat x mat u vec s mat v st return (u,s,trans v) where r = rows x c = cols x ----------------------------------------------------------------------------- eigAux f st m | r == 1 = (fromList [flatten m `at` 0], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r dummy <- createMatrix ColumnMajor 1 1 app4 f mat m mat dummy vec l mat v st return (l,v) where r = rows m foreign import ccall "LAPACK/lapack-aux.h eig_l_C" zgeev :: TCMCMCVCM foreign import ccall "LAPACK/lapack-aux.h eig_l_R" dgeev :: TMMCVM foreign import ccall "LAPACK/lapack-aux.h eig_l_S" dsyev :: TMVM foreign import ccall "LAPACK/lapack-aux.h eig_l_H" zheev :: TCMVCM -- | Wrapper for LAPACK's /zgeev/, which computes the eigenvalues and right eigenvectors of a general complex matrix: -- -- if @(l,v)=eigC m@ then @m \<\> v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are not sorted. eigC :: Matrix (Complex Double) -> (Vector (Complex Double), Matrix (Complex Double)) eigC = eigAux zgeev "eigC" . fmat ----------------------------------------------------------------------------- -- | Wrapper for LAPACK's /dgeev/, which computes the eigenvalues and right eigenvectors of a general real matrix: -- -- if @(l,v)=eigR m@ then @m \<\> v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are not sorted. eigR :: Matrix Double -> (Vector (Complex Double), Matrix (Complex Double)) eigR m = (s', v'') where (s,v) = eigRaux (fmat m) s' = toComplex (subVector 0 r (asReal s), subVector r r (asReal s)) v' = toRows $ trans v v'' = fromColumns $ fixeig (toList s') v' r = rows m eigRaux :: Matrix Double -> (Vector (Complex Double), Matrix Double) eigRaux m | r == 1 = (fromList [(flatten m `at` 0):+0], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r dummy <- createMatrix ColumnMajor 1 1 app4 dgeev mat m mat dummy vec l mat v "eigR" return (l,v) where r = rows m fixeig [] _ = [] fixeig [_] [v] = [comp v] fixeig ((r1:+i1):(r2:+i2):r) (v1:v2:vs) | r1 == r2 && i1 == (-i2) = toComplex (v1,v2) : toComplex (v1,scale (-1) v2) : fixeig r vs | otherwise = comp v1 : fixeig ((r2:+i2):r) (v2:vs) where scale = vectorMapValR Scale fixeig _ _ = error "fixeig with impossible inputs" ----------------------------------------------------------------------------- -- | Wrapper for LAPACK's /dsyev/, which computes the eigenvalues and right eigenvectors of a symmetric real matrix: -- -- if @(l,v)=eigSl m@ then @m \<\> v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are sorted in descending order (use eigS' for ascending order). eigS :: Matrix Double -> (Vector Double, Matrix Double) eigS m = (s', fliprl v) where (s,v) = eigS' (fmat m) s' = fromList . reverse . toList $ s eigS' m | r == 1 = (fromList [flatten m `at` 0], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r app3 dsyev mat m vec l mat v "eigS" return (l,v) where r = rows m ----------------------------------------------------------------------------- -- | Wrapper for LAPACK's /zheev/, which computes the eigenvalues and right eigenvectors of a hermitian complex matrix: -- -- if @(l,v)=eigH m@ then @m \<\> s v = v \<\> diag l@. -- -- The eigenvectors are the columns of v. -- The eigenvalues are sorted in descending order (use eigH' for ascending order). eigH :: Matrix (Complex Double) -> (Vector Double, Matrix (Complex Double)) eigH m = (s', fliprl v) where (s,v) = eigH' (fmat m) s' = fromList . reverse . toList $ s eigH' m | r == 1 = (fromList [realPart (flatten m `at` 0)], singleton 1) | otherwise = unsafePerformIO $ do l <- createVector r v <- createMatrix ColumnMajor r r app3 zheev mat m vec l mat v "eigH" return (l,v) where r = rows m ----------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveR_l" dgesv :: TMMM foreign import ccall "LAPACK/lapack-aux.h linearSolveC_l" zgesv :: TCMCMCM linearSolveSQAux f st a b | n1==n2 && n1==r = unsafePerformIO $ do s <- createMatrix ColumnMajor r c app3 f mat a mat b mat s st return s | otherwise = error $ st ++ " of nonsquare matrix" where n1 = rows a n2 = cols a r = rows b c = cols b -- | Wrapper for LAPACK's /dgesv/, which solves a general real linear system (for several right-hand sides) internally using the lu decomposition. linearSolveR :: Matrix Double -> Matrix Double -> Matrix Double linearSolveR a b = linearSolveSQAux dgesv "linearSolveR" (fmat a) (fmat b) -- | Wrapper for LAPACK's /zgesv/, which solves a general complex linear system (for several right-hand sides) internally using the lu decomposition. linearSolveC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double) linearSolveC a b = linearSolveSQAux zgesv "linearSolveC" (fmat a) (fmat b) ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h linearSolveLSR_l" dgels :: TMMM foreign import ccall "LAPACK/lapack-aux.h linearSolveLSC_l" zgels :: TCMCMCM foreign import ccall "LAPACK/lapack-aux.h linearSolveSVDR_l" dgelss :: Double -> TMMM foreign import ccall "LAPACK/lapack-aux.h linearSolveSVDC_l" zgelss :: Double -> TCMCMCM linearSolveAux f st a b = unsafePerformIO $ do r <- createMatrix ColumnMajor (max m n) nrhs app3 f mat a mat b mat r st return r where m = rows a n = cols a nrhs = cols b -- | Wrapper for LAPACK's /dgels/, which obtains the least squared error solution of an overconstrained real linear system or the minimum norm solution of an underdetermined system, for several right-hand sides. For rank deficient systems use 'linearSolveSVDR'. linearSolveLSR :: Matrix Double -> Matrix Double -> Matrix Double linearSolveLSR a b = subMatrix (0,0) (cols a, cols b) $ linearSolveAux dgels "linearSolverLSR" (fmat a) (fmat b) -- | Wrapper for LAPACK's /zgels/, which obtains the least squared error solution of an overconstrained complex linear system or the minimum norm solution of an underdetermined system, for several right-hand sides. For rank deficient systems use 'linearSolveSVDC'. linearSolveLSC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double) linearSolveLSC a b = subMatrix (0,0) (cols a, cols b) $ linearSolveAux zgels "linearSolveLSC" (fmat a) (fmat b) -- | Wrapper for LAPACK's /dgelss/, which obtains the minimum norm solution to a real linear least squares problem Ax=B using the svd, for several right-hand sides. Admits rank deficient systems but it is slower than 'linearSolveLSR'. The effective rank of A is determined by treating as zero those singular valures which are less than rcond times the largest singular value. If rcond == Nothing machine precision is used. linearSolveSVDR :: Maybe Double -- ^ rcond -> Matrix Double -- ^ coefficient matrix -> Matrix Double -- ^ right hand sides (as columns) -> Matrix Double -- ^ solution vectors (as columns) linearSolveSVDR (Just rcond) a b = subMatrix (0,0) (cols a, cols b) $ linearSolveAux (dgelss rcond) "linearSolveSVDR" (fmat a) (fmat b) linearSolveSVDR Nothing a b = linearSolveSVDR (Just (-1)) (fmat a) (fmat b) -- | Wrapper for LAPACK's /zgelss/, which obtains the minimum norm solution to a complex linear least squares problem Ax=B using the svd, for several right-hand sides. Admits rank deficient systems but it is slower than 'linearSolveLSC'. The effective rank of A is determined by treating as zero those singular valures which are less than rcond times the largest singular value. If rcond == Nothing machine precision is used. linearSolveSVDC :: Maybe Double -- ^ rcond -> Matrix (Complex Double) -- ^ coefficient matrix -> Matrix (Complex Double) -- ^ right hand sides (as columns) -> Matrix (Complex Double) -- ^ solution vectors (as columns) linearSolveSVDC (Just rcond) a b = subMatrix (0,0) (cols a, cols b) $ linearSolveAux (zgelss rcond) "linearSolveSVDC" (fmat a) (fmat b) linearSolveSVDC Nothing a b = linearSolveSVDC (Just (-1)) (fmat a) (fmat b) ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h chol_l_H" zpotrf :: TCMCM foreign import ccall "LAPACK/lapack-aux.h chol_l_S" dpotrf :: TMM -- | Wrapper for LAPACK's /zpotrf/, which computes the Cholesky factorization of a -- complex Hermitian positive definite matrix. cholH :: Matrix (Complex Double) -> Matrix (Complex Double) cholH = cholAux zpotrf "cholH" . fmat -- | Wrapper for LAPACK's /dpotrf/, which computes the Cholesky factorization of a -- real symmetric positive definite matrix. cholS :: Matrix Double -> Matrix Double cholS = cholAux dpotrf "cholS" . fmat cholAux f st a = unsafePerformIO $ do r <- createMatrix ColumnMajor n n app2 f mat a mat r st return r where n = rows a ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h qr_l_R" dgeqr2 :: TMVM foreign import ccall "LAPACK/lapack-aux.h qr_l_C" zgeqr2 :: TCMCVCM -- | Wrapper for LAPACK's /dgeqr2/, which computes a QR factorization of a real matrix. qrR :: Matrix Double -> (Matrix Double, Vector Double) qrR = qrAux dgeqr2 "qrR" . fmat -- | Wrapper for LAPACK's /zgeqr2/, which computes a QR factorization of a complex matrix. qrC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector (Complex Double)) qrC = qrAux zgeqr2 "qrC" . fmat qrAux f st a = unsafePerformIO $ do r <- createMatrix ColumnMajor m n tau <- createVector mn app3 f mat a vec tau mat r st return (r,tau) where m = rows a n = cols a mn = min m n ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h hess_l_R" dgehrd :: TMVM foreign import ccall "LAPACK/lapack-aux.h hess_l_C" zgehrd :: TCMCVCM -- | Wrapper for LAPACK's /dgehrd/, which computes a Hessenberg factorization of a square real matrix. hessR :: Matrix Double -> (Matrix Double, Vector Double) hessR = hessAux dgehrd "hessR" . fmat -- | Wrapper for LAPACK's /zgehrd/, which computes a Hessenberg factorization of a square complex matrix. hessC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector (Complex Double)) hessC = hessAux zgehrd "hessC" . fmat hessAux f st a = unsafePerformIO $ do r <- createMatrix ColumnMajor m n tau <- createVector (mn-1) app3 f mat a vec tau mat r st return (r,tau) where m = rows a n = cols a mn = min m n ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h schur_l_R" dgees :: TMMM foreign import ccall "LAPACK/lapack-aux.h schur_l_C" zgees :: TCMCMCM -- | Wrapper for LAPACK's /dgees/, which computes a Schur factorization of a square real matrix. schurR :: Matrix Double -> (Matrix Double, Matrix Double) schurR = schurAux dgees "schurR" . fmat -- | Wrapper for LAPACK's /zgees/, which computes a Schur factorization of a square complex matrix. schurC :: Matrix (Complex Double) -> (Matrix (Complex Double), Matrix (Complex Double)) schurC = schurAux zgees "schurC" . fmat schurAux f st a = unsafePerformIO $ do u <- createMatrix ColumnMajor n n s <- createMatrix ColumnMajor n n app3 f mat a mat u mat s st return (u,s) where n = rows a ----------------------------------------------------------------------------------- foreign import ccall "LAPACK/lapack-aux.h lu_l_R" dgetrf :: TMVM foreign import ccall "LAPACK/lapack-aux.h lu_l_C" zgetrf :: TCMVCM -- | Wrapper for LAPACK's /dgetrf/, which computes a LU factorization of a general real matrix. luR :: Matrix Double -> (Matrix Double, [Int]) luR = luAux dgetrf "luR" . fmat -- | Wrapper for LAPACK's /zgees/, which computes a Schur factorization of a square complex matrix. luC :: Matrix (Complex Double) -> (Matrix (Complex Double), [Int]) luC = luAux zgetrf "luC" . fmat luAux f st a = unsafePerformIO $ do lu <- createMatrix ColumnMajor n m piv <- createVector (min n m) app3 f mat a vec piv mat lu st return (lu, map (pred.round) (toList piv)) where n = rows a m = cols a ----------------------------------------------------------------------------------- type TW a = CInt -> PD -> a type TQ a = CInt -> CInt -> PC -> a foreign import ccall "LAPACK/lapack-aux.h luS_l_R" dgetrs :: TMVMM foreign import ccall "LAPACK/lapack-aux.h luS_l_C" zgetrs :: TQ (TW (TQ (TQ (IO CInt)))) -- | Wrapper for LAPACK's /dgetrs/, which solves a general real linear system (for several right-hand sides) from a precomputed LU decomposition. lusR :: Matrix Double -> [Int] -> Matrix Double -> Matrix Double lusR a piv b = lusAux dgetrs "lusR" (fmat a) piv (fmat b) -- | Wrapper for LAPACK's /zgetrs/, which solves a general real linear system (for several right-hand sides) from a precomputed LU decomposition. lusC :: Matrix (Complex Double) -> [Int] -> Matrix (Complex Double) -> Matrix (Complex Double) lusC a piv b = lusAux zgetrs "lusC" (fmat a) piv (fmat b) lusAux f st a piv b | n1==n2 && n2==n =unsafePerformIO $ do x <- createMatrix ColumnMajor n m app4 f mat a vec piv' mat b mat x st return x | otherwise = error $ st ++ " on LU factorization of nonsquare matrix" where n1 = rows a n2 = cols a n = rows b m = cols b piv' = fromList (map (fromIntegral.succ) piv) :: Vector Double