{-# LANGUAGE CPP #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} ----------------------------------------------------------------------------- {- | Module : Numeric.LinearAlgebra.Tests.Properties Copyright : (c) Alberto Ruiz 2008 License : GPL-style Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : portable Testing properties. -} module Numeric.LinearAlgebra.Tests.Properties ( dist, (|~|), (~:), Aprox((:~)), zeros, ones, square, unitary, hermitian, wellCond, positiveDefinite, upperTriang, upperHessenberg, luProp, invProp, pinvProp, detProp, nullspaceProp, svdProp1, svdProp1a, svdProp1b, svdProp2, svdProp3, svdProp4, svdProp5a, svdProp5b, svdProp6a, svdProp6b, svdProp7, eigProp, eigSHProp, eigProp2, eigSHProp2, qrProp, rqProp, rqProp1, rqProp2, rqProp3, hessProp, schurProp1, schurProp2, cholProp, expmDiagProp, multProp1, multProp2, subProp, linearSolveProp, linearSolveProp2 ) where import Numeric.LinearAlgebra --hiding (real,complex) import Numeric.LinearAlgebra.LAPACK import Debug.Trace #include "quickCheckCompat.h" --real x = real'' x --complex x = complex'' x debug x = trace (show x) x -- relative error dist :: (Normed t, Num t) => t -> t -> Double dist a b = r where norm = pnorm Infinity na = norm a nb = norm b nab = norm (a-b) mx = max na nb mn = min na nb r = if mn < peps then mx else nab/mx infixl 4 |~| a |~| b = a :~10~: b --a |~| b = dist a b < 10^^(-10) data Aprox a = (:~) a Int -- (~:) :: (Normed a, Num a) => Aprox a -> a -> Bool a :~n~: b = dist a b < 10^^(-n) ------------------------------------------------------ square m = rows m == cols m -- orthonormal columns orthonormal m = ctrans m <> m |~| ident (cols m) unitary m = square m && orthonormal m hermitian m = square m && m |~| ctrans m wellCond m = rcond m > 1/100 positiveDefinite m = minimum (toList e) > 0 where (e,_v) = eigSH m upperTriang m = rows m == 1 || down == z where down = fromList $ concat $ zipWith drop [1..] (toLists (ctrans m)) z = constant 0 (dim down) upperHessenberg m = rows m < 3 || down == z where down = fromList $ concat $ zipWith drop [2..] (toLists (ctrans m)) z = constant 0 (dim down) zeros (r,c) = reshape c (constant 0 (r*c)) ones (r,c) = zeros (r,c) + 1 ----------------------------------------------------- luProp m = m |~| p <> l <> u && f (det p) |~| f s where (l,u,p,s) = lu m f x = fromList [x] invProp m = m <> inv m |~| ident (rows m) pinvProp m = m <> p <> m |~| m && p <> m <> p |~| p && hermitian (m<>p) && hermitian (p<>m) where p = pinv m detProp m = s d1 |~| s d2 where d1 = det m d2 = det' * det q det' = product $ toList $ takeDiag r (q,r) = qr m s x = fromList [x] nullspaceProp m = null nl `trivial` (null nl || m <> n |~| zeros (r,c) && orthonormal (fromColumns nl)) where nl = nullspacePrec 1 m n = fromColumns nl r = rows m c = cols m - rank m ------------------------------------------------------------------ -- fullSVD svdProp1 m = m |~| u <> real d <> trans v && unitary u && unitary v where (u,d,v) = fullSVD m svdProp1a svdfun m = m |~| u <> real d <> trans v && unitary u && unitary v where (u,s,v) = svdfun m d = diagRect s (rows m) (cols m) svdProp1b svdfun m = unitary u && unitary v where (u,_,v) = svdfun m -- thinSVD svdProp2 thinSVDfun m = m |~| u <> diag (real s) <> trans v && orthonormal u && orthonormal v && dim s == min (rows m) (cols m) where (u,s,v) = thinSVDfun m -- compactSVD svdProp3 m = (m |~| u <> real (diag s) <> trans v && orthonormal u && orthonormal v) where (u,s,v) = compactSVD m svdProp4 m' = m |~| u <> real (diag s) <> trans v && orthonormal u && orthonormal v && (dim s == r || r == 0 && dim s == 1) where (u,s,v) = compactSVD m m = fromBlocks [[m'],[m']] r = rank m' svdProp5a m = and (map (s1|~|) [s2,s3,s4,s5,s6]) where s1 = svR m s2 = svRd m (_,s3,_) = svdR m (_,s4,_) = svdRd m (_,s5,_) = thinSVDR m (_,s6,_) = thinSVDRd m svdProp5b m = and (map (s1|~|) [s2,s3,s4,s5,s6]) where s1 = svC m s2 = svCd m (_,s3,_) = svdC m (_,s4,_) = svdCd m (_,s5,_) = thinSVDC m (_,s6,_) = thinSVDCd m svdProp6a m = s |~| s' && v |~| v' && s |~| s'' && u |~| u' where (u,s,v) = svdR m (s',v') = rightSVR m (u',s'') = leftSVR m svdProp6b m = s |~| s' && v |~| v' && s |~| s'' && u |~| u' where (u,s,v) = svdC m (s',v') = rightSVC m (u',s'') = leftSVC m svdProp7 m = s |~| s' && u |~| u' && v |~| v' && s |~| s''' where (u,s,v) = svd m (s',v') = rightSV m (u',_s'') = leftSV m s''' = singularValues m ------------------------------------------------------------------ eigProp m = complex m <> v |~| v <> diag s where (s, v) = eig m eigSHProp m = m <> v |~| v <> real (diag s) && unitary v && m |~| v <> real (diag s) <> ctrans v where (s, v) = eigSH m eigProp2 m = fst (eig m) |~| eigenvalues m eigSHProp2 m = fst (eigSH m) |~| eigenvaluesSH m ------------------------------------------------------------------ qrProp m = q <> r |~| m && unitary q && upperTriang r where (q,r) = qr m rqProp m = r <> q |~| m && unitary q && upperTriang' r where (r,q) = rq m rqProp1 m = r <> q |~| m where (r,q) = rq m rqProp2 m = unitary q where (r,q) = rq m rqProp3 m = upperTriang' r where (r,q) = rq m upperTriang' r = upptr (rows r) (cols r) * r |~| r where upptr f c = buildMatrix f c $ \(r',c') -> if r'-t > c' then 0 else 1 where t = f-c hessProp m = m |~| p <> h <> ctrans p && unitary p && upperHessenberg h where (p,h) = hess m schurProp1 m = m |~| u <> s <> ctrans u && unitary u && upperTriang s where (u,s) = schur m schurProp2 m = m |~| u <> s <> ctrans u && unitary u && upperHessenberg s -- fixme where (u,s) = schur m cholProp m = m |~| ctrans c <> c && upperTriang c where c = chol m -- pos = positiveDefinite m expmDiagProp m = expm (logm m) :~ 7 ~: complex m where logm = matFunc log -- reference multiply mulH a b = fromLists [[ doth ai bj | bj <- toColumns b] | ai <- toRows a ] where doth u v = sum $ zipWith (*) (toList u) (toList v) multProp1 p (a,b) = (a <> b) :~p~: (mulH a b) multProp2 p (a,b) = (ctrans (a <> b)) :~p~: (ctrans b <> ctrans a) linearSolveProp f m = f m m |~| ident (rows m) linearSolveProp2 f (a,x) = not wc `trivial` (not wc || a <> f a b |~| b) where q = min (rows a) (cols a) b = a <> x wc = rank a == q subProp m = m == (trans . fromColumns . toRows) m