{-# LANGUAGE FlexibleContexts #-} ----------------------------------------------------------------------------- {- | Module : Numeric.LinearAlgebra.Util Copyright : (c) Alberto Ruiz 2012 License : GPL Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional -} ----------------------------------------------------------------------------- module Numeric.LinearAlgebra.Util( -- * Convenience functions size, disp, zeros, ones, diagl, row, col, (&),(!), (#), rand, randn, cross, norm, unitary, mt, -- * Convolution -- ** 1D corr, conv, corrMin, -- ** 2D corr2, conv2, separable, -- * Tools for the Kronecker product -- -- | (see A. Fusiello, A matter of notation: Several uses of the Kronecker product in -- 3d computer vision, Pattern Recognition Letters 28 (15) (2007) 2127-2132) -- -- | @`vec` (a \<> x \<> b) == ('trans' b ` 'kronecker' ` a) \<> 'vec' x@ vec, vech, dup, vtrans ) where import Numeric.LinearAlgebra hiding (i) import System.Random(randomIO) import Numeric.LinearAlgebra.Util.Convolution disp :: Int -> Matrix Double -> IO () -- ^ show a matrix with given number of digits after the decimal point disp n = putStrLn . dispf n -- | pseudorandom matrix with uniform elements between 0 and 1 randm :: RandDist -> Int -- ^ rows -> Int -- ^ columns -> IO (Matrix Double) randm d r c = do seed <- randomIO return (reshape c $ randomVector seed d (r*c)) -- | pseudorandom matrix with uniform elements between 0 and 1 rand :: Int -> Int -> IO (Matrix Double) rand = randm Uniform -- | pseudorandom matrix with normal elements randn :: Int -> Int -> IO (Matrix Double) randn = randm Gaussian -- | create a real diagonal matrix from a list diagl :: [Double] -> Matrix Double diagl = diag . fromList -- | a real matrix of zeros zeros :: Int -- ^ rows -> Int -- ^ columns -> Matrix Double zeros r c = konst 0 (r,c) -- | a real matrix of ones ones :: Int -- ^ rows -> Int -- ^ columns -> Matrix Double ones r c = konst 1 (r,c) -- | concatenation of real vectors infixl 3 & (&) :: Vector Double -> Vector Double -> Vector Double a & b = join [a,b] -- | horizontal concatenation of real matrices infixl 3 ! (!) :: Matrix Double -> Matrix Double -> Matrix Double a ! b = fromBlocks [[a,b]] -- | vertical concatenation of real matrices (#) :: Matrix Double -> Matrix Double -> Matrix Double infixl 2 # a # b = fromBlocks [[a],[b]] -- | create a single row real matrix from a list row :: [Double] -> Matrix Double row = asRow . fromList -- | create a single column real matrix from a list col :: [Double] -> Matrix Double col = asColumn . fromList cross :: Vector Double -> Vector Double -> Vector Double -- ^ cross product (for three-element real vectors) cross x y | dim x == 3 && dim y == 3 = fromList [z1,z2,z3] | otherwise = error $ "cross ("++show x++") ("++show y++")" where [x1,x2,x3] = toList x [y1,y2,y3] = toList y z1 = x2*y3-x3*y2 z2 = x3*y1-x1*y3 z3 = x1*y2-x2*y1 norm :: Vector Double -> Double -- ^ 2-norm of real vector norm = pnorm PNorm2 -- | Obtains a vector in the same direction with 2-norm=1 unitary :: Vector Double -> Vector Double unitary v = v / scalar (norm v) -- | (rows &&& cols) size :: Matrix t -> (Int, Int) size m = (rows m, cols m) -- | trans . inv mt :: Matrix Double -> Matrix Double mt = trans . inv ---------------------------------------------------------------------- -------------------------------------------------------------------------------- vec :: Element t => Matrix t -> Vector t -- ^ stacking of columns vec = flatten . trans vech :: Element t => Matrix t -> Vector t -- ^ half-vectorization (of the lower triangular part) vech m = join . zipWith f [0..] . toColumns $ m where f k v = subVector k (dim v - k) v dup :: (Num t, Num (Vector t), Element t) => Int -> Matrix t -- ^ duplication matrix (@'dup' k \<> 'vech' m == 'vec' m@, for symmetric m of 'dim' k) dup k = trans $ fromRows $ map f es where rs = zip [0..] (toRows (ident (k^(2::Int)))) es = [(i,j) | j <- [0..k-1], i <- [0..k-1], i>=j ] f (i,j) | i == j = g (k*j + i) | otherwise = g (k*j + i) + g (k*i + j) g j = v where Just v = lookup j rs vtrans :: Element t => Int -> Matrix t -> Matrix t -- ^ generalized \"vector\" transposition: @'vtrans' 1 == 'trans'@, and @'vtrans' ('rows' m) m == 'asColumn' ('vec' m)@ vtrans p m | r == 0 = fromBlocks . map (map asColumn . takesV (replicate q p)) . toColumns $ m | otherwise = error $ "vtrans " ++ show p ++ " of matrix with " ++ show (rows m) ++ " rows" where (q,r) = divMod (rows m) p