{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE UndecidableInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Internal.Container -- Copyright : (c) Alberto Ruiz 2010-14 -- License : BSD3 -- Maintainer : Alberto Ruiz -- Stability : provisional -- -- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines. -- -- The 'Container' class is used to define optimized generic functions which work -- on 'Vector' and 'Matrix' with real or complex elements. -- -- Some of these functions are also available in the instances of the standard -- numeric Haskell classes provided by "Numeric.LinearAlgebra". -- ----------------------------------------------------------------------------- module Internal.Container where import Internal.Vector import Internal.Matrix import Internal.Element import Internal.Numeric import Data.Complex import Internal.Algorithms(Field,linearSolveSVD) ------------------------------------------------------------------ {- | Creates a real vector containing a range of values: >>> linspace 5 (-3,7::Double) fromList [-3.0,-0.5,2.0,4.5,7.0]@ >>> linspace 5 (8,2+i) :: Vector (Complex Double) fromList [8.0 :+ 0.0,6.5 :+ 0.25,5.0 :+ 0.5,3.5 :+ 0.75,2.0 :+ 1.0] Logarithmic spacing can be defined as follows: @logspace n (a,b) = 10 ** linspace n (a,b)@ -} linspace :: (Fractional e, Container Vector e) => Int -> (e, e) -> Vector e linspace 0 _ = fromList[] linspace 1 (a,b) = fromList[(a+b)/2] linspace n (a,b) = addConstant a $ scale s $ fromList $ map fromIntegral [0 .. n-1] where s = (b-a)/fromIntegral (n-1) -------------------------------------------------------------------------------- infixr 8 <.> {- | An infix synonym for 'dot' >>> vector [1,2,3,4] <.> vector [-2,0,1,1] 5.0 >>> let 𝑖 = 0:+1 :: C >>> fromList [1+𝑖,1] <.> fromList [1,1+𝑖] 2.0 :+ 0.0 -} (<.>) :: Numeric t => Vector t -> Vector t -> t (<.>) = dot {- | dense matrix-vector product >>> let m = (2><3) [1..] >>> m (2><3) [ 1.0, 2.0, 3.0 , 4.0, 5.0, 6.0 ] >>> let v = vector [10,20,30] >>> m #> v fromList [140.0,320.0] -} infixr 8 #> (#>) :: Numeric t => Matrix t -> Vector t -> Vector t (#>) = mXv -- | dense matrix-vector product app :: Numeric t => Matrix t -> Vector t -> Vector t app = (#>) infixl 8 <# -- | dense vector-matrix product (<#) :: Numeric t => Vector t -> Matrix t -> Vector t (<#) = vXm -------------------------------------------------------------------------------- class Mul a b c | a b -> c where infixl 7 <> -- | Matrix-matrix, matrix-vector, and vector-matrix products. (<>) :: Product t => a t -> b t -> c t instance Mul Matrix Matrix Matrix where (<>) = mXm instance Mul Matrix Vector Vector where (<>) m v = flatten $ m <> asColumn v instance Mul Vector Matrix Vector where (<>) v m = flatten $ asRow v <> m -------------------------------------------------------------------------------- {- | Least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD) @ a = (3><2) [ 1.0, 2.0 , 2.0, 4.0 , 2.0, -1.0 ] @ @ v = vector [13.0,27.0,1.0] @ >>> let x = a <\> v >>> x fromList [3.0799999999999996,5.159999999999999] >>> a #> x fromList [13.399999999999999,26.799999999999997,1.0] It also admits multiple right-hand sides stored as columns in a matrix. -} infixl 7 <\> (<\>) :: (LSDiv c, Field t) => Matrix t -> c t -> c t (<\>) = linSolve class LSDiv c where linSolve :: Field t => Matrix t -> c t -> c t instance LSDiv Vector where linSolve m v = flatten (linearSolveSVD m (reshape 1 v)) instance LSDiv Matrix where linSolve = linearSolveSVD -------------------------------------------------------------------------------- class Konst e d c | d -> c, c -> d where -- | -- >>> konst 7 3 :: Vector Float -- fromList [7.0,7.0,7.0] -- -- >>> konst i (3::Int,4::Int) -- (3><4) -- [ 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 -- , 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 -- , 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 ] -- konst :: e -> d -> c e instance Container Vector e => Konst e Int Vector where konst = konst' instance (Num e, Container Vector e) => Konst e (Int,Int) Matrix where konst = konst' -------------------------------------------------------------------------------- class Build d f c e | d -> c, c -> d, f -> e, f -> d, f -> c, c e -> f, d e -> f where -- | -- >>> build 5 (**2) :: Vector Double -- fromList [0.0,1.0,4.0,9.0,16.0] -- -- Hilbert matrix of order N: -- -- >>> let hilb n = build (n,n) (\i j -> 1/(i+j+1)) :: Matrix Double -- >>> putStr . dispf 2 $ hilb 3 -- 3x3 -- 1.00 0.50 0.33 -- 0.50 0.33 0.25 -- 0.33 0.25 0.20 -- build :: d -> f -> c e instance Container Vector e => Build Int (e -> e) Vector e where build = build' instance Container Matrix e => Build (Int,Int) (e -> e -> e) Matrix e where build = build' -------------------------------------------------------------------------------- -- @dot u v = 'udot' ('conj' u) v@ dot :: (Numeric t) => Vector t -> Vector t -> t dot u v = udot (conj u) v -------------------------------------------------------------------------------- optimiseMult :: Monoid (Matrix t) => [Matrix t] -> Matrix t optimiseMult = mconcat -------------------------------------------------------------------------------- {- | Compute mean vector and covariance matrix of the rows of a matrix. >>> meanCov $ gaussianSample 666 1000 (fromList[4,5]) (diagl[2,3]) (fromList [4.010341078059521,5.0197204699640405], (2><2) [ 1.9862461923890056, -1.0127225830525157e-2 , -1.0127225830525157e-2, 3.0373954915729318 ]) -} meanCov :: Matrix Double -> (Vector Double, Matrix Double) meanCov x = (med,cov) where r = rows x k = 1 / fromIntegral r med = konst k r `vXm` x meds = konst 1 r `outer` med xc = x `sub` meds cov = scale (recip (fromIntegral (r-1))) (trans xc `mXm` xc) -------------------------------------------------------------------------------- class ( Container Vector t , Container Matrix t , Konst t Int Vector , Konst t (Int,Int) Matrix , CTrans t , Product t ) => Numeric t instance Numeric Double instance Numeric (Complex Double) instance Numeric Float instance Numeric (Complex Float) instance Numeric I instance Numeric Z -------------------------------------------------------------------------------- sortVector :: (Ord t, Element t) => Vector t -> Vector t sortVector = sortV {- | >>> m <- randn 4 10 >>> disp 2 m 4x10 -0.31 0.41 0.43 -0.19 -0.17 -0.23 -0.17 -1.04 -0.07 -1.24 0.26 0.19 0.14 0.83 -1.54 -0.09 0.37 -0.63 0.71 -0.50 -0.11 -0.10 -1.29 -1.40 -1.04 -0.89 -0.68 0.35 -1.46 1.86 1.04 -0.29 0.19 -0.75 -2.20 -0.01 1.06 0.11 -2.09 -1.58 >>> disp 2 $ m ?? (All, Pos $ sortIndex (m!1)) 4x10 -0.17 -1.04 -1.24 -0.23 0.43 0.41 -0.31 -0.17 -0.07 -0.19 -1.54 -0.63 -0.50 -0.09 0.14 0.19 0.26 0.37 0.71 0.83 -1.04 0.35 1.86 -0.89 -1.29 -0.10 -0.11 -0.68 -1.46 -1.40 -2.20 0.11 -1.58 -0.01 0.19 -0.29 1.04 1.06 -2.09 -0.75 -} sortIndex :: (Ord t, Element t) => Vector t -> Vector I sortIndex = sortI ccompare :: (Ord t, Container c t) => c t -> c t -> c I ccompare = ccompare' cselect :: (Container c t) => c I -> c t -> c t -> c t -> c t cselect = cselect' {- | Extract elements from positions given in matrices of rows and columns. >>> r (3><3) [ 1, 1, 1 , 1, 2, 2 , 1, 2, 3 ] >>> c (3><3) [ 0, 1, 5 , 2, 2, 1 , 4, 4, 1 ] >>> m (4><6) [ 0, 1, 2, 3, 4, 5 , 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17 , 18, 19, 20, 21, 22, 23 ] >>> remap r c m (3><3) [ 6, 7, 11 , 8, 14, 13 , 10, 16, 19 ] The indexes are autoconformable. >>> c' (3><1) [ 1 , 2 , 4 ] >>> remap r c' m (3><3) [ 7, 7, 7 , 8, 14, 14 , 10, 16, 22 ] -} remap :: Element t => Matrix I -> Matrix I -> Matrix t -> Matrix t remap i j m | minElement i >= 0 && maxElement i < fromIntegral (rows m) && minElement j >= 0 && maxElement j < fromIntegral (cols m) = remapM i' j' m | otherwise = error $ "out of range index in remap" where [i',j'] = conformMs [i,j]