{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE UndecidableInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Numeric.Container -- Copyright : (c) Alberto Ruiz 2010-14 -- License : BSD3 -- Maintainer : Alberto Ruiz -- Stability : provisional -- -- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines. -- -- The 'Container' class is used to define optimized generic functions which work -- on 'Vector' and 'Matrix' with real or complex elements. -- -- Some of these functions are also available in the instances of the standard -- numeric Haskell classes provided by "Numeric.LinearAlgebra". -- ----------------------------------------------------------------------------- {-# OPTIONS_HADDOCK hide #-} module Numeric.Container ( -- * Basic functions module Data.Packed, konst, build, linspace, diag, ident, ctrans, -- * Generic operations Container, add, mul, sub, divide, equal, scaleRecip, addConstant, scalar, conj, scale, arctan2, cmap, atIndex, minIndex, maxIndex, minElement, maxElement, sumElements, prodElements, step, cond, find, assoc, accum, Transposable(..), Linear(..), -- * Matrix product Product(..), udot, dot, (◇), Mul(..), Contraction(..),(<.>), optimiseMult, mXm,mXv,vXm,LSDiv(..), outer, kronecker, -- * Random numbers RandDist(..), randomVector, gaussianSample, uniformSample, -- * Element conversion Convert(..), Complexable(), RealElement(), RealOf, ComplexOf, SingleOf, DoubleOf, IndexOf, module Data.Complex, -- * IO module Data.Packed.IO, -- * Misc Testable(..) ) where import Data.Packed hiding (stepD, stepF, condD, condF, conjugateC, conjugateQ) import Data.Packed.Internal.Numeric import Data.Complex import Numeric.LinearAlgebra.Algorithms(Field,linearSolveSVD) import Data.Monoid(Monoid(mconcat)) import Data.Packed.IO import Numeric.LinearAlgebra.Random ------------------------------------------------------------------ {- | Creates a real vector containing a range of values: >>> linspace 5 (-3,7::Double) fromList [-3.0,-0.5,2.0,4.5,7.0]@ >>> linspace 5 (8,2+i) :: Vector (Complex Double) fromList [8.0 :+ 0.0,6.5 :+ 0.25,5.0 :+ 0.5,3.5 :+ 0.75,2.0 :+ 1.0] Logarithmic spacing can be defined as follows: @logspace n (a,b) = 10 ** linspace n (a,b)@ -} linspace :: (Container Vector e) => Int -> (e, e) -> Vector e linspace 0 (a,b) = fromList[(a+b)/2] linspace n (a,b) = addConstant a $ scale s $ fromList $ map fromIntegral [0 .. n-1] where s = (b-a)/fromIntegral (n-1) -------------------------------------------------------- {- | Matrix product, matrix - vector product, and dot product (equivalent to 'contraction') (This operator can also be written using the unicode symbol ◇ (25c7).) Examples: >>> let a = (3><4) [1..] :: Matrix Double >>> let v = fromList [1,0,2,-1] :: Vector Double >>> let u = fromList [1,2,3] :: Vector Double >>> a (3><4) [ 1.0, 2.0, 3.0, 4.0 , 5.0, 6.0, 7.0, 8.0 , 9.0, 10.0, 11.0, 12.0 ] matrix × matrix: >>> disp 2 (a <.> trans a) 3x3 30 70 110 70 174 278 110 278 446 matrix × vector: >>> a <.> v fromList [3.0,11.0,19.0] dot product: >>> u <.> fromList[3,2,1::Double] 10 For complex vectors the first argument is conjugated: >>> fromList [1,i] <.> fromList[2*i+1,3] 1.0 :+ (-1.0) >>> fromList [1,i,1-i] <.> complex a fromList [10.0 :+ 4.0,12.0 :+ 4.0,14.0 :+ 4.0,16.0 :+ 4.0] -} infixl 7 <.> (<.>) :: Contraction a b c => a -> b -> c (<.>) = contraction class Contraction a b c | a b -> c where -- | Matrix product, matrix - vector product, and dot product contraction :: a -> b -> c instance (Product t, Container Vector t) => Contraction (Vector t) (Vector t) t where u `contraction` v = conj u `udot` v instance Product t => Contraction (Matrix t) (Vector t) (Vector t) where contraction = mXv instance (Container Vector t, Product t) => Contraction (Vector t) (Matrix t) (Vector t) where contraction v m = (conj v) `vXm` m instance Product t => Contraction (Matrix t) (Matrix t) (Matrix t) where contraction = mXm -------------------------------------------------------------------------------- class Mul a b c | a b -> c where infixl 7 <> -- | Matrix-matrix, matrix-vector, and vector-matrix products. (<>) :: Product t => a t -> b t -> c t instance Mul Matrix Matrix Matrix where (<>) = mXm instance Mul Matrix Vector Vector where (<>) m v = flatten $ m <> asColumn v instance Mul Vector Matrix Vector where (<>) v m = flatten $ asRow v <> m -------------------------------------------------------------------------------- class LSDiv c where infixl 7 <\> -- | least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD) (<\>) :: Field t => Matrix t -> c t -> c t instance LSDiv Vector where m <\> v = flatten (linearSolveSVD m (reshape 1 v)) instance LSDiv Matrix where (<\>) = linearSolveSVD -------------------------------------------------------------------------------- class Konst e d c | d -> c, c -> d where -- | -- >>> konst 7 3 :: Vector Float -- fromList [7.0,7.0,7.0] -- -- >>> konst i (3::Int,4::Int) -- (3><4) -- [ 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 -- , 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 -- , 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 ] -- konst :: e -> d -> c e instance Container Vector e => Konst e Int Vector where konst = konst' instance Container Vector e => Konst e (Int,Int) Matrix where konst = konst' -------------------------------------------------------------------------------- class Build d f c e | d -> c, c -> d, f -> e, f -> d, f -> c, c e -> f, d e -> f where -- | -- >>> build 5 (**2) :: Vector Double -- fromList [0.0,1.0,4.0,9.0,16.0] -- -- Hilbert matrix of order N: -- -- >>> let hilb n = build (n,n) (\i j -> 1/(i+j+1)) :: Matrix Double -- >>> putStr . dispf 2 $ hilb 3 -- 3x3 -- 1.00 0.50 0.33 -- 0.50 0.33 0.25 -- 0.33 0.25 0.20 -- build :: d -> f -> c e instance Container Vector e => Build Int (e -> e) Vector e where build = build' instance Container Matrix e => Build (Int,Int) (e -> e -> e) Matrix e where build = build' -------------------------------------------------------------------------------- -- | alternative unicode symbol (25c7) for 'contraction' (◇) :: Contraction a b c => a -> b -> c infixl 7 ◇ (◇) = contraction -- | dot product: @cdot u v = 'udot' ('conj' u) v@ dot :: (Container Vector t, Product t) => Vector t -> Vector t -> t dot u v = udot (conj u) v -------------------------------------------------------------------------------- optimiseMult :: Monoid (Matrix t) => [Matrix t] -> Matrix t optimiseMult = mconcat