{-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE OverloadedStrings #-} import qualified Language.C.Inline as C import qualified Language.C.Inline.Unsafe as CU import Data.Monoid ((<>)) import Foreign.C.Types import Foreign.Ptr (Ptr) import Foreign.Marshal.Array import qualified Data.Vector.Storable as V import Data.Coerce (coerce) import Data.Monoid ((<>)) import qualified Data.Vector.Storable as V import qualified Data.Vector.Storable.Mutable as VM import Foreign.C.Types import Foreign.ForeignPtr (newForeignPtr_) import Foreign.Ptr (Ptr) import Foreign.Storable (Storable) import qualified Language.C.Inline as C import qualified Language.C.Inline.Unsafe as CU import System.IO.Unsafe (unsafePerformIO) import qualified Language.Haskell.TH as TH import qualified Language.C.Types as CT import qualified Data.Map as Map import Language.C.Inline.Context C.context (C.baseCtx <> C.vecCtx <> C.funCtx) -- C includes C.include "" C.include "" C.include "" -- prototypes for ARKODE fcts., consts. C.include "" -- serial N_Vector types, fcts., macros C.include "" -- access to dense SUNMatrix C.include "" -- access to dense SUNLinearSolver C.include "" -- access to ARKDls interface C.include "" -- definition of type realtype C.include "" C.include "helpers.h" -- | Solves a system of ODEs. Every 'V.Vector' involved must be of the -- same size. -- {-# NOINLINE solveOdeC #-} -- solveOdeC -- :: (CDouble -> V.Vector CDouble -> V.Vector CDouble) -- -- ^ ODE to Solve -- -> CDouble -- -- ^ Start -- -> V.Vector CDouble -- -- ^ Solution at start point -- -> CDouble -- -- ^ End -- -> Either String (V.Vector CDouble) -- -- ^ Solution at end point, or error. -- solveOdeC fun x0 f0 xend = unsafePerformIO $ do -- let dim = V.length f0 -- let dim_c = fromIntegral dim -- This is in CInt -- -- Convert the function to something of the right type to C. -- let funIO x y f _ptr = do -- -- Convert the pointer we get from C (y) to a vector, and then -- -- apply the user-supplied function. -- fImm <- fun x <$> vectorFromC dim y -- -- Fill in the provided pointer with the resulting vector. -- vectorToC fImm dim f -- -- Unsafe since the function will be called many times. -- [CU.exp| int{ GSL_SUCCESS } |] -- -- Create a mutable vector from the initial solution. This will be -- -- passed to the ODE solving function provided by GSL, and will -- -- contain the final solution. -- fMut <- V.thaw f0 -- res <- [C.block| int { -- gsl_odeiv2_system sys = { -- $fun:(int (* funIO) (double t, const double y[], double dydt[], void * params)), -- // The ODE to solve, converted to function pointer using the `fun` -- // anti-quoter -- NULL, // We don't provide a Jacobian -- $(int dim_c), // The dimension -- NULL // We don't need the parameter pointer -- }; -- // Create the driver, using some sensible values for the stepping -- // function and the tolerances -- gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new ( -- &sys, gsl_odeiv2_step_rk8pd, 1e-6, 1e-6, 0.0); -- // Finally, apply the driver. -- int status = gsl_odeiv2_driver_apply( -- d, &$(double x0), $(double xend), $vec-ptr:(double *fMut)); -- // Free the driver -- gsl_odeiv2_driver_free(d); -- return status; -- } |] -- -- Check the error code -- maxSteps <- [C.exp| int{ GSL_EMAXITER } |] -- smallStep <- [C.exp| int{ GSL_ENOPROG } |] -- good <- [C.exp| int{ GSL_SUCCESS } |] -- if | res == good -> Right <$> V.freeze fMut -- | res == maxSteps -> return $ Left "Too many steps" -- | res == smallStep -> return $ Left "Step size dropped below minimum allowed size" -- | otherwise -> return $ Left $ "Unknown error code " ++ show res -- -- Utils -- vectorFromC :: Storable a => Int -> Ptr a -> IO (V.Vector a) -- vectorFromC len ptr = do -- ptr' <- newForeignPtr_ ptr -- V.freeze $ VM.unsafeFromForeignPtr0 ptr' len -- vectorToC :: Storable a => V.Vector a -> Int -> Ptr a -> IO () -- vectorToC vec len ptr = do -- ptr' <- newForeignPtr_ ptr -- V.copy (VM.unsafeFromForeignPtr0 ptr' len) vec -- /* Check function return value... -- opt == 0 means SUNDIALS function allocates memory so check if -- returned NULL pointer -- opt == 1 means SUNDIALS function returns a flag so check if -- flag >= 0 -- opt == 2 means function allocates memory so check if returned -- NULL pointer -- */ -- static int check_flag(void *flagvalue, const char *funcname, int opt) -- { -- int *errflag; -- /* Check if SUNDIALS function returned NULL pointer - no memory allocated */ -- if (opt == 0 && flagvalue == NULL) { -- fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n", -- funcname); -- return 1; } -- /* Check if flag < 0 */ -- else if (opt == 1) { -- errflag = (int *) flagvalue; -- if (*errflag < 0) { -- fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n", -- funcname, *errflag); -- return 1; }} -- /* Check if function returned NULL pointer - no memory allocated */ -- else if (opt == 2 && flagvalue == NULL) { -- fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n", -- funcname); -- return 1; } -- return 0; -- } main = do res <- [C.block| int { /* general problem variables */ int flag; /* reusable error-checking flag */ N_Vector y = NULL; /* empty vector for storing solution */ SUNMatrix A = NULL; /* empty matrix for linear solver */ SUNLinearSolver LS = NULL; /* empty linear solver object */ void *arkode_mem = NULL; /* empty ARKode memory structure */ FILE *UFID; realtype t, tout; long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, ncfn, netf; /* general problem parameters */ realtype T0 = RCONST(0.0); /* initial time */ realtype Tf = RCONST(10.0); /* final time */ realtype dTout = RCONST(1.0); /* time between outputs */ sunindextype NEQ = 1; /* number of dependent vars. */ realtype reltol = 1.0e-6; /* tolerances */ realtype abstol = 1.0e-10; realtype lamda = -100.0; /* stiffness parameter */ /* Initial diagnostics output */ printf("\nAnalytical ODE test problem:\n"); printf(" lamda = %"GSYM"\n", lamda); printf(" reltol = %.1"ESYM"\n", reltol); printf(" abstol = %.1"ESYM"\n\n",abstol); /* Initialize data structures */ y = N_VNew_Serial(NEQ); /* Create serial vector for solution */ if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1; N_VConst(0.0, y); /* Specify initial condition */ arkode_mem = ARKodeCreate(); /* Create the solver memory */ if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1; /* Call ARKodeInit to initialize the integrator memory and specify the */ /* right-hand side function in y'=f(t,y), the inital time T0, and */ /* the initial dependent variable vector y. Note: since this */ /* problem is fully implicit, we set f_E to NULL and f_I to f. */ flag = ARKodeInit(arkode_mem, NULL, f, T0, y); if (check_flag(&flag, "ARKodeInit", 1)) return 1; /* Set routines */ flag = ARKodeSetUserData(arkode_mem, (void *) &lamda); /* Pass lamda to user functions */ if (check_flag(&flag, "ARKodeSetUserData", 1)) return 1; flag = ARKodeSStolerances(arkode_mem, reltol, abstol); /* Specify tolerances */ if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1; /* Initialize dense matrix data structure and solver */ A = SUNDenseMatrix(NEQ, NEQ); if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1; LS = SUNDenseLinearSolver(y, A); if (check_flag((void *)LS, "SUNDenseLinearSolver", 0)) return 1; /* Linear solver interface */ flag = ARKDlsSetLinearSolver(arkode_mem, LS, A); /* Attach matrix and linear solver */ if (check_flag(&flag, "ARKDlsSetLinearSolver", 1)) return 1; flag = ARKDlsSetJacFn(arkode_mem, Jac); /* Set Jacobian routine */ if (check_flag(&flag, "ARKDlsSetJacFn", 1)) return 1; /* Specify linearly implicit RHS, with non-time-dependent Jacobian */ flag = ARKodeSetLinear(arkode_mem, 0); if (check_flag(&flag, "ARKodeSetLinear", 1)) return 1; /* Open output stream for results, output comment line */ UFID = fopen("solution.txt","w"); fprintf(UFID,"# t u\n"); /* output initial condition to disk */ fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", T0, NV_Ith_S(y,0)); /* Main time-stepping loop: calls ARKode to perform the integration, then prints results. Stops when the final time has been reached */ t = T0; tout = T0+dTout; printf(" t u\n"); printf(" ---------------------\n"); while (Tf - t > 1.0e-15) { flag = ARKode(arkode_mem, tout, y, &t, ARK_NORMAL); /* call integrator */ if (check_flag(&flag, "ARKode", 1)) break; printf(" %10.6"FSYM" %10.6"FSYM"\n", t, NV_Ith_S(y,0)); /* access/print solution */ fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", t, NV_Ith_S(y,0)); if (flag >= 0) { /* successful solve: update time */ tout += dTout; tout = (tout > Tf) ? Tf : tout; } else { /* unsuccessful solve: break */ fprintf(stderr,"Solver failure, stopping integration\n"); break; } } printf(" ---------------------\n"); fclose(UFID); /* Get/print some final statistics on how the solve progressed */ flag = ARKodeGetNumSteps(arkode_mem, &nst); check_flag(&flag, "ARKodeGetNumSteps", 1); flag = ARKodeGetNumStepAttempts(arkode_mem, &nst_a); check_flag(&flag, "ARKodeGetNumStepAttempts", 1); flag = ARKodeGetNumRhsEvals(arkode_mem, &nfe, &nfi); check_flag(&flag, "ARKodeGetNumRhsEvals", 1); flag = ARKodeGetNumLinSolvSetups(arkode_mem, &nsetups); check_flag(&flag, "ARKodeGetNumLinSolvSetups", 1); flag = ARKodeGetNumErrTestFails(arkode_mem, &netf); check_flag(&flag, "ARKodeGetNumErrTestFails", 1); flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni); check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1); flag = ARKodeGetNumNonlinSolvConvFails(arkode_mem, &ncfn); check_flag(&flag, "ARKodeGetNumNonlinSolvConvFails", 1); flag = ARKDlsGetNumJacEvals(arkode_mem, &nje); check_flag(&flag, "ARKDlsGetNumJacEvals", 1); flag = ARKDlsGetNumRhsEvals(arkode_mem, &nfeLS); check_flag(&flag, "ARKDlsGetNumRhsEvals", 1); printf("\nFinal Solver Statistics:\n"); printf(" Internal solver steps = %li (attempted = %li)\n", nst, nst_a); printf(" Total RHS evals: Fe = %li, Fi = %li\n", nfe, nfi); printf(" Total linear solver setups = %li\n", nsetups); printf(" Total RHS evals for setting up the linear system = %li\n", nfeLS); printf(" Total number of Jacobian evaluations = %li\n", nje); printf(" Total number of Newton iterations = %li\n", nni); printf(" Total number of linear solver convergence failures = %li\n", ncfn); printf(" Total number of error test failures = %li\n\n", netf); /* check the solution error */ flag = check_ans(y, t, reltol, abstol); /* Clean up and return */ N_VDestroy(y); /* Free y vector */ ARKodeFree(&arkode_mem); /* Free integrator memory */ SUNLinSolFree(LS); /* Free linear solver */ SUNMatDestroy(A); /* Free A matrix */ return flag; } |] putStrLn $ show res