{-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} import qualified Language.C.Inline as C import qualified Language.C.Inline.Unsafe as CU import Data.Monoid ((<>)) import Foreign.C.Types import Foreign.Ptr (Ptr) import Foreign.Marshal.Array import qualified Data.Vector.Storable as V import Data.Coerce (coerce) import Data.Monoid ((<>)) import qualified Data.Vector.Storable as V import qualified Data.Vector.Storable.Mutable as VM import Foreign.C.Types import Foreign.ForeignPtr (newForeignPtr_) import Foreign.Ptr (Ptr) import Foreign.Storable (Storable) import qualified Language.C.Inline as C import qualified Language.C.Inline.Unsafe as CU import System.IO.Unsafe (unsafePerformIO) import qualified Language.Haskell.TH as TH import qualified Language.C.Types as CT import qualified Data.Map as Map import Language.C.Inline.Context import Foreign.C.String import Foreign.Storable (peek, poke, peekByteOff, pokeByteOff) import Data.Int import qualified Types as T C.context (C.baseCtx <> C.vecCtx <> C.funCtx <> T.sunCtx) -- C includes C.include "" C.include "" C.include "" -- prototypes for ARKODE fcts., consts. C.include "" -- serial N_Vector types, fcts., macros C.include "" -- access to dense SUNMatrix C.include "" -- access to dense SUNLinearSolver C.include "" -- access to ARKDls interface C.include "" -- definition of type realtype C.include "" C.include "helpers.h" -- These were semi-generated using hsc2hs with Bar.hsc as the -- template. They are probably very fragile and could easily break on -- different architectures and / or changes in the sundials package. getContentPtr :: Storable a => Ptr b -> IO a getContentPtr ptr = ((\hsc_ptr -> peekByteOff hsc_ptr 0)) ptr getData :: Storable a => Ptr b -> IO a getData ptr = ((\hsc_ptr -> peekByteOff hsc_ptr 16)) ptr getDataFromContents :: Storable b => Int -> Ptr a -> IO (V.Vector b) getDataFromContents len ptr = do qtr <- getContentPtr ptr rtr <- getData qtr vectorFromC len rtr putDataInContents :: Storable a => V.Vector a -> Int -> Ptr b -> IO () putDataInContents vec len ptr = do qtr <- getContentPtr ptr rtr <- getData qtr vectorToC vec len rtr -- Utils vectorFromC :: Storable a => Int -> Ptr a -> IO (V.Vector a) vectorFromC len ptr = do ptr' <- newForeignPtr_ ptr V.freeze $ VM.unsafeFromForeignPtr0 ptr' len vectorToC :: Storable a => V.Vector a -> Int -> Ptr a -> IO () vectorToC vec len ptr = do ptr' <- newForeignPtr_ ptr V.copy (VM.unsafeFromForeignPtr0 ptr' len) vec -- Provided you always call your function 'multiEq' then we can -- probably solve any set of ODEs! But of course we don't want to -- follow the Fortran way of interacting with sundials. -- foreign export ccall multiEq :: Ptr CDouble -> Ptr CDouble -> Ptr CDouble -> Ptr CLong -> Ptr CDouble -> Ptr CInt -> IO () multiEq :: Ptr CDouble -> Ptr CDouble -> Ptr CDouble -> Ptr CLong -> Ptr CDouble -> Ptr CInt -> IO () multiEq tPtr yPtr yDotPtr iParPtr rParPtr ierPtr = do t <- peek tPtr y <- vectorFromC 1 yPtr vectorToC (V.map realToFrac $ stiffish (realToFrac t) (V.map realToFrac y)) 1 yDotPtr poke ierPtr 0 stiffish :: Double -> V.Vector Double -> V.Vector Double stiffish t v = V.fromList [ lamda * u + 1.0 / (1.0 + t * t) - lamda * atan t ] where u = v V.! 0 lamda = -100.0 solveOdeC :: (CDouble -> V.Vector CDouble -> V.Vector CDouble) -> V.Vector Double -> CInt solveOdeC fun f0 = unsafePerformIO $ do let dim = V.length f0 -- We need the types that sundials expects. These are tied together -- in 'Types'. The Haskell type is currently empty! let funIO :: CDouble -> Ptr T.BarType -> Ptr T.BarType -> Ptr () -> IO CInt funIO x y f _ptr = do -- Convert the pointer we get from C (y) to a vector, and then -- apply the user-supplied function. fImm <- fun x <$> getDataFromContents dim y -- Fill in the provided pointer with the resulting vector. putDataInContents fImm dim f -- I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] res <- [C.block| int { /* general problem variables */ int flag; /* reusable error-checking flag */ N_Vector y = NULL; /* empty vector for storing solution */ SUNMatrix A = NULL; /* empty matrix for linear solver */ SUNLinearSolver LS = NULL; /* empty linear solver object */ void *arkode_mem = NULL; /* empty ARKode memory structure */ FILE *UFID; realtype t, tout; long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, ncfn, netf; /* general problem parameters */ realtype T0 = RCONST(0.0); /* initial time */ realtype Tf = RCONST(10.0); /* final time */ realtype dTout = RCONST(1.0); /* time between outputs */ sunindextype NEQ = 1; /* number of dependent vars. */ realtype reltol = 1.0e-6; /* tolerances */ realtype abstol = 1.0e-10; realtype lamda = -100.0; /* stiffness parameter */ /* Initial diagnostics output */ printf("\nAnalytical ODE test problem:\n"); printf(" lamda = %"GSYM"\n", lamda); printf(" reltol = %.1"ESYM"\n", reltol); printf(" abstol = %.1"ESYM"\n\n",abstol); /* Initialize data structures */ y = N_VNew_Serial(NEQ); /* Create serial vector for solution */ if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1; N_VConst(0.0, y); /* Specify initial condition */ arkode_mem = ARKodeCreate(); /* Create the solver memory */ if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1; /* Call ARKodeInit to initialize the integrator memory and specify the */ /* right-hand side function in y'=f(t,y), the inital time T0, and */ /* the initial dependent variable vector y. Note: since this */ /* problem is fully implicit, we set f_E to NULL and f_I to f. */ /* Here we use the C types defined in helpers.h which tie up with */ /* the Haskell types defined in Types */ flag = ARKodeInit(arkode_mem, NULL, $fun:(int (* funIO) (double t, BarType y[], BarType dydt[], void * params)), T0, y); /* flag = ARKodeInit(arkode_mem, NULL, FARKfi, T0, y); */ if (check_flag(&flag, "ARKodeInit", 1)) return 1; /* Set routines */ flag = ARKodeSetUserData(arkode_mem, (void *) &lamda); /* Pass lamda to user functions */ if (check_flag(&flag, "ARKodeSetUserData", 1)) return 1; flag = ARKodeSStolerances(arkode_mem, reltol, abstol); /* Specify tolerances */ if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1; /* Initialize dense matrix data structure and solver */ A = SUNDenseMatrix(NEQ, NEQ); if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1; LS = SUNDenseLinearSolver(y, A); if (check_flag((void *)LS, "SUNDenseLinearSolver", 0)) return 1; /* Linear solver interface */ flag = ARKDlsSetLinearSolver(arkode_mem, LS, A); /* Attach matrix and linear solver */ /* Open output stream for results, output comment line */ UFID = fopen("solution.txt","w"); fprintf(UFID,"# t u\n"); /* output initial condition to disk */ fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", T0, NV_Ith_S(y,0)); /* Main time-stepping loop: calls ARKode to perform the integration, then prints results. Stops when the final time has been reached */ t = T0; tout = T0+dTout; printf(" t u\n"); printf(" ---------------------\n"); while (Tf - t > 1.0e-15) { flag = ARKode(arkode_mem, tout, y, &t, ARK_NORMAL); /* call integrator */ if (check_flag(&flag, "ARKode", 1)) break; printf(" %10.6"FSYM" %10.6"FSYM"\n", t, NV_Ith_S(y,0)); /* access/print solution */ fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", t, NV_Ith_S(y,0)); if (flag >= 0) { /* successful solve: update time */ tout += dTout; tout = (tout > Tf) ? Tf : tout; } else { /* unsuccessful solve: break */ fprintf(stderr,"Solver failure, stopping integration\n"); break; } } printf(" ---------------------\n"); fclose(UFID); /* Get/print some final statistics on how the solve progressed */ flag = ARKodeGetNumSteps(arkode_mem, &nst); check_flag(&flag, "ARKodeGetNumSteps", 1); flag = ARKodeGetNumStepAttempts(arkode_mem, &nst_a); check_flag(&flag, "ARKodeGetNumStepAttempts", 1); flag = ARKodeGetNumRhsEvals(arkode_mem, &nfe, &nfi); check_flag(&flag, "ARKodeGetNumRhsEvals", 1); flag = ARKodeGetNumLinSolvSetups(arkode_mem, &nsetups); check_flag(&flag, "ARKodeGetNumLinSolvSetups", 1); flag = ARKodeGetNumErrTestFails(arkode_mem, &netf); check_flag(&flag, "ARKodeGetNumErrTestFails", 1); flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni); check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1); flag = ARKodeGetNumNonlinSolvConvFails(arkode_mem, &ncfn); check_flag(&flag, "ARKodeGetNumNonlinSolvConvFails", 1); flag = ARKDlsGetNumJacEvals(arkode_mem, &nje); check_flag(&flag, "ARKDlsGetNumJacEvals", 1); flag = ARKDlsGetNumRhsEvals(arkode_mem, &nfeLS); check_flag(&flag, "ARKDlsGetNumRhsEvals", 1); printf("\nFinal Solver Statistics:\n"); printf(" Internal solver steps = %li (attempted = %li)\n", nst, nst_a); printf(" Total RHS evals: Fe = %li, Fi = %li\n", nfe, nfi); printf(" Total linear solver setups = %li\n", nsetups); printf(" Total RHS evals for setting up the linear system = %li\n", nfeLS); printf(" Total number of Jacobian evaluations = %li\n", nje); printf(" Total number of Newton iterations = %li\n", nni); printf(" Total number of linear solver convergence failures = %li\n", ncfn); printf(" Total number of error test failures = %li\n\n", netf); /* check the solution error */ flag = check_ans(y, t, reltol, abstol); /* Clean up and return */ N_VDestroy(y); /* Free y vector */ ARKodeFree(&arkode_mem); /* Free integrator memory */ SUNLinSolFree(LS); /* Free linear solver */ SUNMatDestroy(A); /* Free A matrix */ return flag; } |] return res main = do let res = solveOdeC (coerce stiffish) (V.fromList [1.0]) putStrLn $ show res