{-# OPTIONS_GHC -Wall #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} module Numeric.Sundials.Arkode.ODE ( solveOdeC ) where import qualified Language.C.Inline as C import qualified Language.C.Inline.Unsafe as CU import Data.Monoid ((<>)) import Foreign.C.Types import Foreign.Ptr (Ptr) import qualified Data.Vector.Storable as V import Data.Coerce (coerce) import qualified Data.Vector.Storable.Mutable as VM import Foreign.ForeignPtr (newForeignPtr_) import Foreign.Storable (Storable) import System.IO.Unsafe (unsafePerformIO) import Foreign.Storable (peekByteOff) import Numeric.LinearAlgebra.HMatrix (Vector, Matrix) import qualified Types as T C.context (C.baseCtx <> C.vecCtx <> C.funCtx <> T.sunCtx) -- C includes C.include "" C.include "" C.include "" -- prototypes for ARKODE fcts., consts. C.include "" -- serial N_Vector types, fcts., macros C.include "" -- access to dense SUNMatrix C.include "" -- access to dense SUNLinearSolver C.include "" -- access to ARKDls interface C.include "" -- definition of type realtype C.include "" C.include "../../../helpers.h" -- These were semi-generated using hsc2hs with Bar.hsc as the -- template. They are probably very fragile and could easily break on -- different architectures and / or changes in the sundials package. getContentPtr :: Storable a => Ptr b -> IO a getContentPtr ptr = ((\hsc_ptr -> peekByteOff hsc_ptr 0)) ptr getData :: Storable a => Ptr b -> IO a getData ptr = ((\hsc_ptr -> peekByteOff hsc_ptr 16)) ptr getDataFromContents :: Storable b => Int -> Ptr a -> IO (V.Vector b) getDataFromContents len ptr = do qtr <- getContentPtr ptr rtr <- getData qtr vectorFromC len rtr putDataInContents :: Storable a => V.Vector a -> Int -> Ptr b -> IO () putDataInContents vec len ptr = do qtr <- getContentPtr ptr rtr <- getData qtr vectorToC vec len rtr -- Utils vectorFromC :: Storable a => Int -> Ptr a -> IO (V.Vector a) vectorFromC len ptr = do ptr' <- newForeignPtr_ ptr V.freeze $ VM.unsafeFromForeignPtr0 ptr' len vectorToC :: Storable a => V.Vector a -> Int -> Ptr a -> IO () vectorToC vec len ptr = do ptr' <- newForeignPtr_ ptr V.copy (VM.unsafeFromForeignPtr0 ptr' len) vec stiffish :: Double -> V.Vector Double -> V.Vector Double stiffish t v = V.fromList [ lamda * u + 1.0 / (1.0 + t * t) - lamda * atan t ] where u = v V.! 0 lamda = -100.0 brusselator :: Double -> V.Vector Double -> V.Vector Double brusselator _t x = V.fromList [ a - (w + 1) * u + v * u^2 , w * u - v * u^2 , (b - w) / eps - w * u ] where a = 1.0 b = 3.5 eps = 5.0e-6 u = x V.! 0 v = x V.! 1 w = x V.! 2 odeSolve :: (Double -> [Double] -> [Double]) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> [Double] -- ^ initial conditions -> Vector Double -- ^ desired solution times -> Matrix Double -- ^ solution odeSolve = undefined solveOdeC :: (CDouble -> V.Vector CDouble -> V.Vector CDouble) -- ^ The RHS of the system \(\dot{y} = f(t,y)\) -> V.Vector CDouble -- ^ Initial conditions -> V.Vector CDouble -- ^ Desired solution times -> Either CInt (V.Vector CDouble) -- ^ Error code or solution solveOdeC fun f0 ts = unsafePerformIO $ do let dim = V.length f0 nEq :: CLong nEq = fromIntegral dim fMut <- V.thaw f0 -- We need the types that sundials expects. These are tied together -- in 'Types'. The Haskell type is currently empty! let funIO :: CDouble -> Ptr T.BarType -> Ptr T.BarType -> Ptr () -> IO CInt funIO x y f _ptr = do -- Convert the pointer we get from C (y) to a vector, and then -- apply the user-supplied function. fImm <- fun x <$> getDataFromContents dim y -- Fill in the provided pointer with the resulting vector. putDataInContents fImm dim f -- I don't understand what this comment means -- Unsafe since the function will be called many times. [CU.exp| int{ 0 } |] res <- [C.block| int { /* general problem variables */ int flag; /* reusable error-checking flag */ N_Vector y = NULL; /* empty vector for storing solution */ SUNMatrix A = NULL; /* empty matrix for linear solver */ SUNLinearSolver LS = NULL; /* empty linear solver object */ void *arkode_mem = NULL; /* empty ARKode memory structure */ FILE *UFID; realtype t, tout; long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, ncfn, netf; /* general problem parameters */ realtype T0 = RCONST(0.0); /* initial time */ realtype Tf = RCONST(10.0); /* final time */ realtype dTout = RCONST(1.0); /* time between outputs */ sunindextype NEQ = $(sunindextype nEq); /* number of dependent vars. */ realtype reltol = 1.0e-6; /* tolerances */ realtype abstol = 1.0e-10; /* Initial diagnostics output */ printf("\nAnalytical ODE test problem:\n"); printf(" reltol = %.1"ESYM"\n", reltol); printf(" abstol = %.1"ESYM"\n\n",abstol); /* Initialize data structures */ y = N_VNew_Serial(NEQ); /* Create serial vector for solution */ if (check_flag((void *)y, "N_VNew_Serial", 0)) return 1; int i; for (i = 0; i < NEQ; i++) { NV_Ith_S(y,i) = ($vec-ptr:(double *fMut))[i]; }; /* Specify initial condition */ arkode_mem = ARKodeCreate(); /* Create the solver memory */ if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1; /* Call ARKodeInit to initialize the integrator memory and specify the */ /* right-hand side function in y'=f(t,y), the inital time T0, and */ /* the initial dependent variable vector y. Note: since this */ /* problem is fully implicit, we set f_E to NULL and f_I to f. */ /* Here we use the C types defined in helpers.h which tie up with */ /* the Haskell types defined in Types */ flag = ARKodeInit(arkode_mem, NULL, $fun:(int (* funIO) (double t, BarType y[], BarType dydt[], void * params)), T0, y); if (check_flag(&flag, "ARKodeInit", 1)) return 1; /* Set routines */ flag = ARKodeSStolerances(arkode_mem, reltol, abstol); /* Specify tolerances */ if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1; /* Initialize dense matrix data structure and solver */ A = SUNDenseMatrix(NEQ, NEQ); if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1; LS = SUNDenseLinearSolver(y, A); if (check_flag((void *)LS, "SUNDenseLinearSolver", 0)) return 1; /* Linear solver interface */ flag = ARKDlsSetLinearSolver(arkode_mem, LS, A); /* Attach matrix and linear solver */ /* Open output stream for results, output comment line */ UFID = fopen("solution.txt","w"); fprintf(UFID,"# t u\n"); /* output initial condition to disk */ fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", T0, NV_Ith_S(y,0)); /* Main time-stepping loop: calls ARKode to perform the integration, then prints results. Stops when the final time has been reached */ t = T0; tout = T0+dTout; printf(" t u\n"); printf(" ---------------------\n"); while (Tf - t > 1.0e-15) { flag = ARKode(arkode_mem, tout, y, &t, ARK_NORMAL); /* call integrator */ if (check_flag(&flag, "ARKode", 1)) break; printf(" %10.6"FSYM" %10.6"FSYM"\n", t, NV_Ith_S(y,0)); /* access/print solution */ fprintf(UFID," %.16"ESYM" %.16"ESYM"\n", t, NV_Ith_S(y,0)); if (flag >= 0) { /* successful solve: update time */ tout += dTout; tout = (tout > Tf) ? Tf : tout; } else { /* unsuccessful solve: break */ fprintf(stderr,"Solver failure, stopping integration\n"); break; } } printf(" ---------------------\n"); fclose(UFID); for (i = 0; i < NEQ; i++) { ($vec-ptr:(double *fMut))[i] = NV_Ith_S(y,i); }; /* Get/print some final statistics on how the solve progressed */ flag = ARKodeGetNumSteps(arkode_mem, &nst); check_flag(&flag, "ARKodeGetNumSteps", 1); flag = ARKodeGetNumStepAttempts(arkode_mem, &nst_a); check_flag(&flag, "ARKodeGetNumStepAttempts", 1); flag = ARKodeGetNumRhsEvals(arkode_mem, &nfe, &nfi); check_flag(&flag, "ARKodeGetNumRhsEvals", 1); flag = ARKodeGetNumLinSolvSetups(arkode_mem, &nsetups); check_flag(&flag, "ARKodeGetNumLinSolvSetups", 1); flag = ARKodeGetNumErrTestFails(arkode_mem, &netf); check_flag(&flag, "ARKodeGetNumErrTestFails", 1); flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni); check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1); flag = ARKodeGetNumNonlinSolvConvFails(arkode_mem, &ncfn); check_flag(&flag, "ARKodeGetNumNonlinSolvConvFails", 1); flag = ARKDlsGetNumJacEvals(arkode_mem, &nje); check_flag(&flag, "ARKDlsGetNumJacEvals", 1); flag = ARKDlsGetNumRhsEvals(arkode_mem, &nfeLS); check_flag(&flag, "ARKDlsGetNumRhsEvals", 1); printf("\nFinal Solver Statistics:\n"); printf(" Internal solver steps = %li (attempted = %li)\n", nst, nst_a); printf(" Total RHS evals: Fe = %li, Fi = %li\n", nfe, nfi); printf(" Total linear solver setups = %li\n", nsetups); printf(" Total RHS evals for setting up the linear system = %li\n", nfeLS); printf(" Total number of Jacobian evaluations = %li\n", nje); printf(" Total number of Newton iterations = %li\n", nni); printf(" Total number of linear solver convergence failures = %li\n", ncfn); printf(" Total number of error test failures = %li\n\n", netf); /* Clean up and return */ N_VDestroy(y); /* Free y vector */ ARKodeFree(&arkode_mem); /* Free integrator memory */ SUNLinSolFree(LS); /* Free linear solver */ SUNMatDestroy(A); /* Free A matrix */ return flag; } |] if res ==0 then do v <- V.freeze fMut return $ Right v else do return $ Left res main :: IO () main = do let res = solveOdeC (coerce brusselator) (V.fromList [1.2, 3.1, 3.0]) undefined putStrLn $ show res