{-# LANGUAGE FlexibleContexts, UndecidableInstances, FlexibleInstances #-} ----------------------------------------------------------------------------- {- | Module : Numeric.LinearAlgebra.Tests.Instances Copyright : (c) Alberto Ruiz 2008 License : BSD3 Maintainer : Alberto Ruiz Stability : provisional Arbitrary instances for vectors, matrices. -} module Numeric.LinearAlgebra.Tests.Instances( Sq(..), rSq,cSq, Rot(..), rRot,cRot, Her(..), rHer,cHer, WC(..), rWC,cWC, SqWC(..), rSqWC, cSqWC, rSymWC, cSymWC, PosDef(..), rPosDef, cPosDef, Consistent(..), rConsist, cConsist, RM,CM, rM,cM, FM,ZM, fM,zM ) where import System.Random import Numeric.LinearAlgebra.HMatrix hiding (vector) import Control.Monad(replicateM) import Test.QuickCheck(Arbitrary,arbitrary,choose,vector,sized,shrink) shrinkListElementwise :: (Arbitrary a) => [a] -> [[a]] shrinkListElementwise [] = [] shrinkListElementwise (x:xs) = [ y:xs | y <- shrink x ] ++ [ x:ys | ys <- shrinkListElementwise xs ] shrinkPair :: (Arbitrary a, Arbitrary b) => (a,b) -> [(a,b)] shrinkPair (a,b) = [ (a,x) | x <- shrink b ] ++ [ (x,b) | x <- shrink a ] chooseDim = sized $ \m -> choose (1,max 1 m) instance (Field a, Arbitrary a) => Arbitrary (Vector a) where arbitrary = do m <- chooseDim l <- vector m return $ fromList l -- shrink any one of the components shrink = map fromList . shrinkListElementwise . toList instance (Element a, Arbitrary a) => Arbitrary (Matrix a) where arbitrary = do m <- chooseDim n <- chooseDim l <- vector (m*n) return $ (m>< cols a) . shrinkListElementwise . concat . toLists $ a -- a square matrix newtype (Sq a) = Sq (Matrix a) deriving Show instance (Element a, Arbitrary a) => Arbitrary (Sq a) where arbitrary = do n <- chooseDim l <- vector (n*n) return $ Sq $ (n> Arbitrary (Rot a) where arbitrary = do Sq m <- arbitrary let (q,_) = qr m return (Rot q) -- a complex hermitian or real symmetric matrix newtype (Her a) = Her (Matrix a) deriving Show instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (Her a) where arbitrary = do Sq m <- arbitrary let m' = m/2 return $ Her (m' + tr m') class (Field a, Arbitrary a, Element (RealOf a), Random (RealOf a)) => ArbitraryField a instance ArbitraryField Double instance ArbitraryField (Complex Double) -- a well-conditioned general matrix (the singular values are between 1 and 100) newtype (WC a) = WC (Matrix a) deriving Show instance (Numeric a, ArbitraryField a) => Arbitrary (WC a) where arbitrary = do m <- arbitrary let (u,_,v) = svd m r = rows m c = cols m n = min r c sv' <- replicateM n (choose (1,100)) let s = diagRect 0 (fromList sv') r c return $ WC (u <> real s <> tr v) -- a well-conditioned square matrix (the singular values are between 1 and 100) newtype (SqWC a) = SqWC (Matrix a) deriving Show instance (ArbitraryField a, Numeric a) => Arbitrary (SqWC a) where arbitrary = do Sq m <- arbitrary let (u,_,v) = svd m n = rows m sv' <- replicateM n (choose (1,100)) let s = diag (fromList sv') return $ SqWC (u <> real s <> tr v) -- a positive definite square matrix (the eigenvalues are between 0 and 100) newtype (PosDef a) = PosDef (Matrix a) deriving Show instance (Numeric a, ArbitraryField a, Num (Vector a)) => Arbitrary (PosDef a) where arbitrary = do Her m <- arbitrary let (_,v) = eigSH m n = rows m l <- replicateM n (choose (0,100)) let s = diag (fromList l) p = v <> real s <> tr v return $ PosDef (0.5 * p + 0.5 * tr p) -- a pair of matrices that can be multiplied newtype (Consistent a) = Consistent (Matrix a, Matrix a) deriving Show instance (Field a, Arbitrary a) => Arbitrary (Consistent a) where arbitrary = do n <- chooseDim k <- chooseDim m <- chooseDim la <- vector (n*k) lb <- vector (k*m) return $ Consistent ((n>