/* NIST Secure Hash Algorithm */ /* heavily modified by Uwe Hollerbach */ /* from Peter C. Gutmann's implementation as found in */ /* Applied Cryptography by Bruce Schneier */ /* Further modifications to include the "UNRAVEL" stuff, below */ /* This code is in the public domain */ #include "edsio.h" #include #define SHA_BLOCKSIZE 64 #define SHA_DIGESTSIZE 20 /* UNRAVEL should be fastest & biggest */ /* UNROLL_LOOPS should be just as big, but slightly slower */ /* both undefined should be smallest and slowest */ #define UNRAVEL /* #define UNROLL_LOOPS */ /* by default, compile for little-endian machines (Intel, Vax) */ /* change for big-endian machines; for machines which are neither, */ /* you will need to change the definition of maybe_byte_reverse */ #ifndef WORDS_BIGENDIAN /* from config.h */ #define SHA_LITTLE_ENDIAN #endif /* NIST's proposed modification to SHA of 7/11/94 may be */ /* activated by defining USE_MODIFIED_SHA; leave it off for now */ #undef USE_MODIFIED_SHA /* SHA f()-functions */ #define f1(x,y,z) ((x & y) | (~x & z)) #define f2(x,y,z) (x ^ y ^ z) #define f3(x,y,z) ((x & y) | (x & z) | (y & z)) #define f4(x,y,z) (x ^ y ^ z) /* SHA constants */ #define CONST1 0x5a827999L #define CONST2 0x6ed9eba1L #define CONST3 0x8f1bbcdcL #define CONST4 0xca62c1d6L /* 32-bit rotate */ #define ROT32(x,n) ((x << n) | (x >> (32 - n))) /* the generic case, for when the overall rotation is not unraveled */ #define FG(n) \ T = ROT32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; \ E = D; D = C; C = ROT32(B,30); B = A; A = T /* specific cases, for when the overall rotation is unraveled */ #define FA(n) \ T = ROT32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = ROT32(B,30) #define FB(n) \ E = ROT32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = ROT32(A,30) #define FC(n) \ D = ROT32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = ROT32(T,30) #define FD(n) \ C = ROT32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = ROT32(E,30) #define FE(n) \ B = ROT32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = ROT32(D,30) #define FT(n) \ A = ROT32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = ROT32(C,30) /* do SHA transformation */ static void sha_transform(EdsioSHACtx *ctx) { int i; guint32 T, A, B, C, D, E, W[80], *WP; for (i = 0; i < 16; ++i) { W[i] = ctx->data[i]; } for (i = 16; i < 80; ++i) { W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; #ifdef USE_MODIFIED_SHA W[i] = ROT32(W[i], 1); #endif /* USE_MODIFIED_SHA */ } A = ctx->digest[0]; B = ctx->digest[1]; C = ctx->digest[2]; D = ctx->digest[3]; E = ctx->digest[4]; WP = W; #ifdef UNRAVEL FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); ctx->digest[0] += E; ctx->digest[1] += T; ctx->digest[2] += A; ctx->digest[3] += B; ctx->digest[4] += C; #else /* !UNRAVEL */ #ifdef UNROLL_LOOPS FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); #else /* !UNROLL_LOOPS */ for (i = 0; i < 20; ++i) { FG(1); } for (i = 20; i < 40; ++i) { FG(2); } for (i = 40; i < 60; ++i) { FG(3); } for (i = 60; i < 80; ++i) { FG(4); } #endif /* !UNROLL_LOOPS */ ctx->digest[0] += A; ctx->digest[1] += B; ctx->digest[2] += C; ctx->digest[3] += D; ctx->digest[4] += E; #endif /* !UNRAVEL */ } #ifdef SHA_LITTLE_ENDIAN /* change endianness of data */ static void maybe_byte_reverse(guint32 *buffer, int count) { int i; guint32 in; count /= sizeof(guint32); for (i = 0; i < count; ++i) { in = *buffer; *buffer++ = ((in << 24) & 0xff000000) | ((in << 8) & 0x00ff0000) | ((in >> 8) & 0x0000ff00) | ((in >> 24) & 0x000000ff); } } #else /* !SHA_LITTLE_ENDIAN */ #define maybe_byte_reverse(a,b) /* do nothing */ #endif /* SHA_LITTLE_ENDIAN */ /* initialize the SHA digest */ void edsio_sha_init(EdsioSHACtx *ctx) { ctx->digest[0] = 0x67452301L; ctx->digest[1] = 0xefcdab89L; ctx->digest[2] = 0x98badcfeL; ctx->digest[3] = 0x10325476L; ctx->digest[4] = 0xc3d2e1f0L; ctx->count_lo = 0L; ctx->count_hi = 0L; ctx->local = 0; } /* update the SHA digest */ void edsio_sha_update(EdsioSHACtx *ctx, const guint8 *buffer, guint count) { int i; if ((ctx->count_lo + ((guint32) count << 3)) < ctx->count_lo) { ++ctx->count_hi; } ctx->count_lo += (guint32) count << 3; ctx->count_hi += (guint32) count >> 29; if (ctx->local) { i = SHA_BLOCKSIZE - ctx->local; if (i > count) { i = count; } memcpy(((guint8 *) ctx->data) + ctx->local, buffer, i); count -= i; buffer += i; ctx->local += i; if (ctx->local == SHA_BLOCKSIZE) { maybe_byte_reverse(ctx->data, SHA_BLOCKSIZE); sha_transform(ctx); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(ctx->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; maybe_byte_reverse(ctx->data, SHA_BLOCKSIZE); sha_transform(ctx); } memcpy(ctx->data, buffer, count); ctx->local = count; } /* finish computing the SHA digest */ void edsio_sha_final(guint8* digest, EdsioSHACtx *ctx) { int count; guint32 lo_bit_count, hi_bit_count; lo_bit_count = ctx->count_lo; hi_bit_count = ctx->count_hi; count = (int) ((lo_bit_count >> 3) & 0x3f); ((guint8 *) ctx->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset(((guint8 *) ctx->data) + count, 0, SHA_BLOCKSIZE - count); maybe_byte_reverse(ctx->data, SHA_BLOCKSIZE); sha_transform(ctx); memset((guint8 *) ctx->data, 0, SHA_BLOCKSIZE - 8); } else { memset(((guint8 *) ctx->data) + count, 0, SHA_BLOCKSIZE - 8 - count); } maybe_byte_reverse(ctx->data, SHA_BLOCKSIZE); ctx->data[14] = hi_bit_count; ctx->data[15] = lo_bit_count; sha_transform(ctx); memcpy (digest, ctx->digest, 20); }