#!/usr/bin/python2.4 # xdelta 3 - delta compression tools and library # Copyright (C) 2003, 2006, 2007. Joshua P. MacDonald # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # TODO: Start testing window sizes # TODO: Test 1.5 vs. greedy # TODO: Compare w/ bsdiff and generate more summary import os, sys, math, re, time, types, array, random import xdelta3main import xdelta3 HIST_SIZE = 10 # the number of buckets MIN_SIZE = 0 TIME_TOO_SHORT = 0.050 SKIP_TRIALS = 2 MIN_TRIALS = 3 MAX_TRIALS = 15 MIN_STDDEV_PCT = 1.5 MIN_RUN = 1000 * 1000 * 1 MAX_RUN = 1000 * 1000 * 10 # How many results per round MAX_RESULTS = 10 KEEP_P = (0.5) FAST_P = (0.0) SLOW_P = (0.0) FILE_P = (0.30) CONFIG_ORDER = [ 'large_look', 'large_step', 'small_look', 'small_chain', 'small_lchain', 'ssmatch', 'trylazy', 'max_lazy', 'long_enough', 'promote' ] def INPUT_SPEC(rand): return { 'large_look' : lambda d: rand.choice([9, 11, 13, 15]), 'large_step' : lambda d: rand.choice([11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 ]), 'small_chain' : lambda d: rand.choice([1]), 'small_lchain' : lambda d: rand.choice([1]), 'max_lazy' : lambda d: rand.choice([9, 13, 18]), 'long_enough' : lambda d: rand.choice([9, 13, 18]), 'small_look' : lambda d: rand.choice([4]), 'promote' : lambda d: 0, 'trylazy' : lambda d: 1, 'ssmatch' : lambda d: 0, } # # #RCSDIR = '/mnt/polaroid/Polaroid/orbit_linux/home/jmacd/PRCS' #RCSDIR = '/tmp/PRCS_read_copy' RCSDIR = 'G:/jmacd/PRCS/prcs/b' SAMPLEDIR = "C:/sample_data/Wesnoth/tar" TMPDIR = '/tmp/xd3regtest.%d' % os.getpid() RUNFILE = os.path.join(TMPDIR, 'run') DFILE = os.path.join(TMPDIR, 'output') RFILE = os.path.join(TMPDIR, 'recon') HEAD_STATE = 0 BAR_STATE = 1 REV_STATE = 2 DATE_STATE = 3 # IGNORE_FILENAME = re.compile('.*\\.(gif|jpg).*') # rcs output RE_TOTREV = re.compile('total revisions: (\\d+)') RE_BAR = re.compile('----------------------------') RE_REV = re.compile('revision (.+)') RE_DATE = re.compile('date: ([^;]+);.*') # xdelta output RE_HDRSZ = re.compile('VCDIFF header size: +(\\d+)') RE_EXTCOMP = re.compile('XDELTA ext comp.*') # Testwide defaults testwide_encode_args = [ # secondary compression on or off #'-S', 'djw', # do not measure instruction buffer effects '-I', '0', # do not attempt external decompression '-D' ] def c2s(c): return ' '.join(['%02d' % x for x in c]) #end def SumList(l): return reduce(lambda x,y: x+y, l) #end # returns (total, mean, stddev, q2 (median), # (q3-q1)/2 ("semi-interquartile range"), max-min (spread)) class StatList: def __init__(self,l,desc,hist=0): cnt = len(l) assert(cnt > 1) l.sort() self.cnt = cnt self.l = l self.total = SumList(l) self.mean = self.total / float(self.cnt) self.s = math.sqrt(SumList([(x-self.mean) * (x - self.mean) for x in l]) / float(self.cnt-1)) self.q0 = l[0] self.q1 = l[int(self.cnt/4.0+0.5)] self.q2 = l[int(self.cnt/2.0+0.5)] self.q3 = l[min(self.cnt-1,int((3.0*self.cnt)/4.0+0.5))] self.q4 = l[self.cnt-1]+1 self.siqr = (self.q3-self.q1)/2.0; self.spread = (self.q4-self.q0) self.str = '%s %d; mean %d; sdev %d; q2 %d; .5(q3-q1) %.1f; spread %d' % \ (desc, self.total, self.mean, self.s, self.q2, self.siqr, self.spread) #end #end def RunCommand(args, ok = [0]): #print 'run command %s' % (' '.join(args)) p = os.spawnvp(os.P_WAIT, args[0], args) if p not in ok: raise CommandError(args, 'exited %d' % p) #end #end def RunCommandIO(args,infn,outfn): p = os.fork() if p == 0: os.dup2(os.open(infn,os.O_RDONLY),0) os.dup2(os.open(outfn,os.O_CREAT|os.O_TRUNC|os.O_WRONLY),1) os.execvp(args[0], args) else: s = os.waitpid(p,0) o = os.WEXITSTATUS(s[1]) if not os.WIFEXITED(s[1]) or o != 0: raise CommandError(args, 'exited %d' % o) #end #end #end class TimedTest: def __init__(self, target, source, runnable, skip_trials = SKIP_TRIALS, min_trials = MIN_TRIALS, max_trials = MAX_TRIALS, min_stddev_pct = MIN_STDDEV_PCT): self.target = target self.source = source self.runnable = runnable self.skip_trials = skip_trials self.min_trials = min(min_trials, max_trials) self.max_trials = max_trials self.min_stddev_pct = min_stddev_pct self.encode_time = self.DoTest(DFILE, lambda x: x.Encode(self.target, self.source, DFILE)) self.encode_size = runnable.EncodeSize(DFILE) self.decode_time = self.DoTest(RFILE, lambda x: x.Decode(DFILE, self.source, RFILE)) # verify runnable.Verify(self.target, RFILE) #end def DoTest(self, fname, func): trials = 0 measured = [] while 1: try: os.remove(fname) except OSError: pass start_time = time.time() start_clock = time.clock() func(self.runnable) total_clock = (time.clock() - start_clock) total_time = (time.time() - start_time) elap_time = max(total_time, 0.0000001) elap_clock = max(total_clock, 0.0000001) trials = trials + 1 # skip some of the first trials if trials > self.skip_trials: measured.append((elap_clock, elap_time)) #print 'measurement total: %.1f ms' % (total_time * 1000.0) # at least so many if trials < (self.skip_trials + self.min_trials): #print 'continue: need more trials: %d' % trials continue # compute %variance done = 0 if self.skip_trials + self.min_trials <= 2: measured = measured + measured; done = 1 #end time_stat = StatList([x[1] for x in measured], 'elap time') sp = float(time_stat.s) / float(time_stat.mean) # what if MAX_TRIALS is exceeded? too_many = (trials - self.skip_trials) >= self.max_trials good = (100.0 * sp) < self.min_stddev_pct if done or too_many or good: trials = trials - self.skip_trials if not done and not good: #print 'too many trials: %d' % trials pass #clock = StatList([x[0] for x in measured], 'elap clock') return time_stat #end #end #end #end def Decimals(start, end): l = [] step = start while 1: r = range(step, step * 10, step) l = l + r if step * 10 >= end: l.append(step * 10) break step = step * 10 return l #end # This tests the raw speed of 0-byte inputs def RunSpeedTest(): for L in Decimals(MIN_RUN, MAX_RUN): SetFileSize(RUNFILE, L) trx = TimedTest(RUNFILE, None, Xdelta3Runner(['-W', str(1<<20)])) ReportSpeed(L, trx, '1MB ') trx = TimedTest(RUNFILE, None, Xdelta3Runner(['-W', str(1<<19)])) ReportSpeed(L, trx, '512k') trx = TimedTest(RUNFILE, None, Xdelta3Runner(['-W', str(1<<18)])) ReportSpeed(L, trx, '256k') trm = TimedTest(RUNFILE, None, Xdelta3Mod1(RUNFILE)) ReportSpeed(L, trm, 'swig') trg = TimedTest(RUNFILE, None, GzipRun1()) ReportSpeed(L,trg,'gzip') #end #end def SetFileSize(F,L): fd = os.open(F, os.O_CREAT | os.O_WRONLY) os.ftruncate(fd,L) assert os.fstat(fd).st_size == L os.close(fd) #end def ReportSpeed(L,tr,desc): print '%s run length %u: size %u: time %.3f ms: decode %.3f ms' % \ (desc, L, tr.encode_size, tr.encode_time.mean * 1000.0, tr.decode_time.mean * 1000.0) #end class Xdelta3RunClass: def __init__(self, extra): self.extra = extra #end def __str__(self): return 'xdelta3' #end def New(self): return Xdelta3Runner(self.extra) #end #end class Xdelta3Runner: def __init__(self, extra): self.extra = extra #end def Encode(self, target, source, output): args = (testwide_encode_args + self.extra + ['-eqf']) if source: args.append('-s') args.append(source) #end args = args + [target, output] self.Main(args) #end def Decode(self, input, source, output): args = ['-dqf'] if source: args.append('-s') args.append(source) #end args = args + [input, output] self.Main(args) #end def Verify(self, target, recon): RunCommand(('cmp', target, recon)) #end def EncodeSize(self, output): return os.stat(output).st_size #end def Main(self, args): try: xdelta3main.main(args) except Exception, e: raise CommandError(args, "xdelta3.main exception") #end #end #end class Xdelta3Mod1: def __init__(self, file): self.target_data = open(file, 'r').read() #end def Encode(self, ignore1, ignore2, ignore3): r1, encoded = xdelta3.xd3_encode_memory(self.target_data, None, 1000000, 1<<10) if r1 != 0: raise CommandError('memory', 'encode failed: %s' % r1) #end self.encoded = encoded #end def Decode(self, ignore1, ignore2, ignore3): r2, data1 = xdelta3.xd3_decode_memory(self.encoded, None, len(self.target_data)) if r2 != 0: raise CommandError('memory', 'decode failed: %s' % r1) #end self.decoded = data1 #end def Verify(self, ignore1, ignore2): if self.target_data != self.decoded: raise CommandError('memory', 'bad decode') #end #end def EncodeSize(self, ignore1): return len(self.encoded) #end #end class GzipRun1: def Encode(self, target, source, output): assert source == None RunCommandIO(['gzip', '-cf'], target, output) #end def Decode(self, input, source, output): assert source == None RunCommandIO(['gzip', '-dcf'], input, output) #end def Verify(self, target, recon): RunCommand(('cmp', target, recon)) #end def EncodeSize(self, output): return os.stat(output).st_size #end #end class Xdelta1RunClass: def __str__(self): return 'xdelta1' #end def New(self): return Xdelta1Runner() #end #end class Xdelta1Runner: def Encode(self, target, source, output): assert source != None args = ['xdelta1', 'delta', '-q', source, target, output] RunCommand(args, [0, 1]) #end def Decode(self, input, source, output): assert source != None args = ['xdelta1', 'patch', '-q', input, source, output] # Note: for dumb historical reasons, xdelta1 returns 1 or 0 RunCommand(args) #end def Verify(self, target, recon): RunCommand(('cmp', target, recon)) #end def EncodeSize(self, output): return os.stat(output).st_size #end #end # TODO: cleanup below this line # exceptions class SkipRcsException: def __init__(self,reason): self.reason = reason #end #end class NotEnoughVersions: def __init__(self): pass #end #end class CommandError: def __init__(self,cmd,str): if type(cmd) is types.TupleType or \ type(cmd) is types.ListType: cmd = reduce(lambda x,y: '%s %s' % (x,y),cmd) #end print 'command was: ',cmd print 'command failed: ',str print 'have fun debugging' #end #end class RcsVersion: def __init__(self,vstr): self.vstr = vstr #end def __cmp__(self,other): return cmp(self.date, other.date) #end def __str__(self): return str(self.vstr) #end #end class RcsFile: def __init__(self, fname): self.fname = fname self.versions = [] self.state = HEAD_STATE #end def SetTotRev(self,s): self.totrev = int(s) #end def Rev(self,s): self.rev = RcsVersion(s) if len(self.versions) >= self.totrev: raise SkipRcsException('too many versions (in log messages)') #end self.versions.append(self.rev) #end def Date(self,s): self.rev.date = s #end def Match(self, line, state, rx, gp, newstate, f): if state == self.state: m = rx.match(line) if m: if f: f(m.group(gp)) #end self.state = newstate return 1 #end #end return None #end def Sum1Rlog(self): f = os.popen('rlog '+self.fname, "r") l = f.readline() while l: if self.Match(l, HEAD_STATE, RE_TOTREV, 1, BAR_STATE, self.SetTotRev): pass elif self.Match(l, BAR_STATE, RE_BAR, 1, REV_STATE, None): pass elif self.Match(l, REV_STATE, RE_REV, 1, DATE_STATE, self.Rev): pass elif self.Match(l, DATE_STATE, RE_DATE, 1, BAR_STATE, self.Date): pass #end l = f.readline() #end c = f.close() if c != None: raise c #end #end def Sum1(self): st = os.stat(self.fname) self.rcssize = st.st_size self.Sum1Rlog() if self.totrev != len(self.versions): raise SkipRcsException('wrong version count') #end self.versions.sort() #end def Checkout(self,n): v = self.versions[n] out = open(self.Verf(n), "w") cmd = 'co -ko -p%s %s' % (v.vstr, self.fname) total = 0 (inf, stream, err) = os.popen3(cmd, "r") inf.close() buf = stream.read() while buf: total = total + len(buf) out.write(buf) buf = stream.read() #end v.vsize = total estr = '' buf = err.read() while buf: estr = estr + buf buf = err.read() #end if stream.close(): raise CommandError(cmd, 'checkout failed: %s\n%s\n%s' % (v.vstr, self.fname, estr)) #end out.close() err.close() #end def Vdate(self,n): return self.versions[n].date #end def Vstr(self,n): return self.versions[n].vstr #end def Verf(self,n): return os.path.join(TMPDIR, 'input.%d' % n) #end def FilePairsByDate(self, runclass): if self.totrev < 2: raise NotEnoughVersions() #end self.Checkout(0) ntrials = [] if self.totrev < 2: return vtrials #end for v in range(0,self.totrev-1): if v > 1: os.remove(self.Verf(v-1)) #end self.Checkout(v+1) if os.stat(self.Verf(v)).st_size < MIN_SIZE or \ os.stat(self.Verf(v+1)).st_size < MIN_SIZE: continue #end result = TimedTest(self.Verf(v+1), self.Verf(v), runclass.New()) target_size = os.stat(self.Verf(v+1)).st_size print '%s %s %s: %.2f%% encode %.3f ms: decode %.3f ms' % \ (runclass, os.path.basename(self.fname), self.Vstr(v+1), target_size > 0 and (100.0 * result.encode_size / target_size) or 0, result.encode_time.mean * 1000.0, result.decode_time.mean * 1000.0) ntrials.append(result) #end os.remove(self.Verf(self.totrev-1)) os.remove(self.Verf(self.totrev-2)) return ntrials #end def AppendVersion(self, f, n): self.Checkout(n) rf = open(self.Verf(n), "r") data = rf.read() f.write(data) rf.close() return len(data) #end class RcsFinder: def __init__(self): self.subdirs = [] self.rcsfiles = [] self.others = [] self.skipped = [] #end def Scan1(self,dir): dents = os.listdir(dir) subdirs = [] rcsfiles = [] others = [] for dent in dents: full = os.path.join(dir, dent) if os.path.isdir(full): subdirs.append(full) elif dent[len(dent)-2:] == ",v": rcsfiles.append(RcsFile(full)) else: others.append(full) #end #end self.subdirs = self.subdirs + subdirs self.rcsfiles = self.rcsfiles + rcsfiles self.others = self.others + others return subdirs #end def Crawl(self, dir): subdirs = [dir] while subdirs: s1 = self.Scan1(subdirs[0]) subdirs = subdirs[1:] + s1 #end #end def Summarize(self): good = [] for rf in self.rcsfiles: try: rf.Sum1() if rf.totrev < 2: raise SkipRcsException('too few versions (< 2)') #end except SkipRcsException, e: #print 'skipping file %s: %s' % (rf.fname, e.reason) self.skipped.append(rf) else: good.append(rf) #end self.rcsfiles = good #end def AllPairsByDate(self,runclass): results = [] good = [] for rf in self.rcsfiles: try: results = results + rf.FilePairsByDate(runclass) except SkipRcsException: print 'file %s has compressed versions: skipping' % (rf.fname) except NotEnoughVersions: print 'testing %s on %s: not enough versions' % (runclass, rf.fname) else: good.append(rf) #end self.rcsfiles = good return results #end def GetTestRcsFiles(): rcsf = RcsFinder() rcsf.Crawl(RCSDIR) if len(rcsf.rcsfiles) == 0: raise CommandError('', 'no RCS files') #end rcsf.Summarize() print "rcsfiles: rcsfiles %d; subdirs %d; others %d; skipped %d" % (len(rcsf.rcsfiles), len(rcsf.subdirs), len(rcsf.others), len(rcsf.skipped)) print StatList([x.rcssize for x in rcsf.rcsfiles], "rcssize", 1).str print StatList([x.totrev for x in rcsf.rcsfiles], "totrev", 1).str return rcsf #end # TODO: cleanup below this line # class RandomTestResult: def __init__(self, round, config, runtime, compsize): self.round = round self.myconfig = config self.runtime = runtime self.compsize = compsize self.score = None self.time_pos = None self.size_pos = None self.score_pos = None #end def __str__(self): return 'time %.6f%s size %d%s << %s >>' % ( self.time(), ((self.time_pos != None) and (" (%s)" % self.time_pos) or ""), self.size(), ((self.size_pos != None) and (" (%s)" % self.size_pos) or ""), c2s(self.config())) #end def time(self): return self.runtime #end def size(self): return self.compsize #end def config(self): return self.myconfig #end def score(self): return self.score #end #end def PosInAlist(l, e): for i in range(0, len(l)): if l[i][1] == e: return i; #end #end return -1 #end test_totals = {} class RandomTester: def __init__(self, old_results): self.old_configs = old_results # these get reset each round so we don't test the same config twice self.results = [] self.trial_num = 0 self.round_num = 0 self.random = random.Random() #end def Reset(self): self.results = [] #end def HasEnoughResults(self): return len(self.results) >= MAX_RESULTS #end def RandomConfig(self): config = [] map = {} for key in CONFIG_ORDER: val = map[key] = (INPUT_SPEC(self.random)[key])(map) config.append(val) #end if map['small_chain'] < map['small_lchain']: return None if map['large_look'] < map['small_look']: return None for r in self.results: if c2s(r.config()) == c2s(config): return None #end #end return config def MakeBigFiles(self, rcsf): f1 = open(TMPDIR + "/big.1", "w") f2 = open(TMPDIR + "/big.2", "w") population = [] for file in rcsf.rcsfiles: if len(file.versions) < 2: continue population.append(file) #end f1sz = 0 f2sz = 0 fcount = int(len(population) * FILE_P) assert fcount > 0 for file in self.random.sample(population, fcount): m = IGNORE_FILENAME.match(file.fname) if m != None: continue #end r1, r2 = self.random.sample(xrange(0, len(file.versions)), 2) f1sz += file.AppendVersion(f1, r1) f2sz += file.AppendVersion(f2, r2) #end print 'source %u bytes; target %u bytes' % (f1sz, f2sz) f1.close() f2.close() return (TMPDIR + "/big.1", TMPDIR + "/big.2") def RandomFileTest(self, f1, f2): config = None if len(self.old_configs) > 0: config = self.old_configs[0] self.old_configs = self.old_configs[1:] #end while config is None: config = self.RandomConfig() #end args = [ '-C', ','.join([str(x) for x in config]) ] result = TimedTest(f2, f1, Xdelta3Runner(args)) tr = RandomTestResult(self.round_num, config, result.encode_time.mean, result.encode_size) self.results.append(tr) print 'Test %d: %s' % (self.trial_num, tr) self.trial_num += 1 return #end def ScoreTests(self): scored = [] timed = [] sized = [] t_min = float(min([test.time() for test in self.results])) t_max = float(max([test.time() for test in self.results])) s_min = float(min([test.size() for test in self.results])) s_max = float(max([test.size() for test in self.results])) # These are the major axes of an ellipse, after normalizing for the # mininum values. Time should be major, size should be minor. time_major = (t_max / t_min) size_minor = (s_max / s_min) # Dimensions of the rectangular region bounding the results. t_rect = time_major - 1.0 s_rect = size_minor - 1.0 rect_ratio = s_rect / t_rect for test in self.results: # Transform the major min/max region linearly to normalize the # min-max variation in time (major) and size (minor). s_norm = test.size() / s_min t_norm = 1.0 + rect_ratio * (test.time() / t_min - 1.0) assert t_norm >= 1.0 assert t_norm <= size_minor + 0.000001 # Projects the coords onto a min-unit circle. Use the # root-mean-square. Smaller scores are better, 1.0 is the minimum. test.score = math.sqrt(t_norm * t_norm / 2.0 + s_norm * s_norm / 2.0) scored.append((test.score, test)) timed.append((test.time(), test)) sized.append((test.size(), test)) #end scored.sort() timed.sort() sized.sort() best_by_size = [] best_by_time = [] print 'Worst: %s' % scored[len(scored)-1][1] scored = [x[1] for x in scored[0:int(MAX_RESULTS * KEEP_P)]] for fast in [x[1] for x in timed[0:int(MAX_RESULTS * FAST_P)]]: if fast in scored: continue print 'Carry fast: %s' % (fast) scored.append(fast) #end for slow in [x[1] for x in sized[0:int(MAX_RESULTS * SLOW_P)]]: if slow in scored: continue print 'Carry slow: %s' % (slow) scored.append(slow) #end # Do not carry slow. It causes bad compressors to perpetuate extra # weight. for test in scored: test.size_pos = PosInAlist(sized, test) test.time_pos = PosInAlist(timed, test) #end r = [] pos = 0 for test in scored: pos += 1 test.score_pos = pos c = c2s(test.config()) if not test_totals.has_key(c): test_totals[c] = [test] else: test_totals[c].append(test) #end s = 0.0 self.results.append(test) r.append(test.config()) all_r = test_totals[c] for t in all_r: s += float(t.score_pos) #end if len(all_r) == 1: stars = '' elif len(all_r) >= 10: stars = ' ***' elif len(all_r) >= int(1/KEEP_P): stars = ' **' else: stars = ' *' print 'Score: %0.6f %s (%.1f%s%s)' % \ (test.score, test, s / len(all_r), stars, (len(all_r) > 2) and (' in %d' % len(all_r)) or "") #end return r #end #end def RunRandomRcsTest(rcsf): configs = [] while 1: test = RandomTester(configs) f1, f2 = test.MakeBigFiles(rcsf) while not test.HasEnoughResults(): test.RandomFileTest(f1, f2) #end configs = test.ScoreTests() test.Reset() #end #end def RunSampleTest(d, files): # TODO: consolidate w/ the above print 'testing %s with %d files' % (d, len(files)) configs = [] while len(files) > 1: test = RandomTester(configs) f1 = files[0] f2 = files[1] while not test.HasEnoughResults(): test.RandomFileTest(f1, f2) #end configs = test.ScoreTests() test.Reset() files = files[1:] #end #end def RunSampleDataTest(): dirs = [SAMPLEDIR] while dirs: d = dirs[0] dirs = dirs[1:] l = os.listdir(d) files = [] for e in l: p = os.path.join(d, e) if os.path.isdir(p): dirs.append(p) else: files.append(p) #end #end if files: files.sort() RunSampleTest(d, files) #end #end #end def ReportPairs(name, results): encode_time = 0 decode_time = 0 encode_size = 0 for r in results: encode_time += r.encode_time.mean decode_time += r.decode_time.mean encode_size += r.encode_size #end print '%s rcs: encode %.2f s: decode %.2f s: size %d' % \ (name, encode_time, decode_time, encode_size) #end if __name__ == "__main__": try: RunCommand(['rm', '-rf', TMPDIR]) os.mkdir(TMPDIR) #RunSpeedTest() rcsf = GetTestRcsFiles() x3r = rcsf.AllPairsByDate(Xdelta3RunClass(['-9', '-S', 'djw'])) ReportPairs('xd3 -9', x3r) #x3r = rcsf.AllPairsByDate(Xdelta3RunClass([])) #ReportPairs('xdelta3', x3r) #x1r = rcsf.AllPairsByDate(Xdelta1RunClass()) #ReportPairs('xdelta1', x1r) #RunRandomRcsTest(rcsf) #RunSampleDataTest() except CommandError: pass else: RunCommand(['rm', '-rf', TMPDIR]) pass