summaryrefslogtreecommitdiff
path: root/prototypes/LamMachineV2.hs
blob: a95568886720cf255ee50118fa1e56e572556578 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE BangPatterns #-}

--module LamMachineV2 where

import Data.List
import Data.Word
import Data.Int
import Data.Monoid
import Data.Maybe
import Data.Bits
import Data.String
import qualified Data.Vector as PV
import qualified Data.Vector.Mutable as V
import qualified Data.Vector.Unboxed.Mutable as UV
import qualified Data.Vector.Unboxed as PUV
import Control.Arrow hiding ((<+>))
import Control.Category hiding ((.), id)
import Control.Monad
import Control.Monad.Writer
import Control.Monad.ST
import Debug.Trace
import qualified Text.Show.Pretty as P
import System.Environment

import LambdaCube.Compiler.Pretty

-----------------------------------------

class HasLen v where
    len :: v -> Int

class (HasLen v, Monad m) => VecLike v m where
    type VElem v
    new     :: Int -> m v
    append  :: v -> (Int, [VElem v]) -> m v
    read_   :: v -> Int -> m (VElem v)
    freezedRead :: v -> m (Int -> VElem v)
    write   :: v -> Int -> VElem v -> m v
    modify  :: v -> Int -> (VElem v -> VElem v) -> m v
    vToList :: v -> m [VElem v]

-----------------

data Vec s a = Vec !Int !(V.STVector s a)

instance HasLen (Vec s a) where
    len (Vec n _) = n

instance VecLike (Vec s a) (ST s) where
    type VElem (Vec s a) = a

    new n | n < 0 = error $ "new: " ++ show n
    new n = Vec 0 <$> V.unsafeNew n

    append (Vec n v@(V.length -> m)) (k, xs) = do
        let !nk = n + k
        v' <- if m >= nk then return v else V.unsafeGrow v (2 * nk - m)
        zipWithM_ (V.unsafeWrite v') [n..] xs
        return $ Vec nk v'

    read_ (Vec _ v) i = V.unsafeRead v i

    freezedRead (Vec _ v) = PV.unsafeFreeze v <&> PV.unsafeIndex

    write x@(Vec _ v) i a = V.unsafeWrite v i a >> return x

    modify x@(Vec _ v) i a = V.unsafeModify v a i >> return x

    vToList (Vec n v) = mapM (V.unsafeRead v) [0..n-1]

--------------------------------------------------------------------------- data structures

data Lit
    = LInt   !Int
    | LChar  !Char
    | LFloat !Double
    deriving Eq

data Exp
    = Var_ !DB
    | Lam  VarInfo Exp
    | App  Exp Exp
    | Con  ConIndex [Exp]
    | Case CaseInf Exp [Exp]
    | Lit  !Lit
    | Delta !Op [Exp]
    deriving (Show)

pattern Var i  = Var_ (Pos i)
pattern Free i = Var_ (Neg i)

type DB = Int
type ConIndex = (ConInfo, Int)
type CaseInf = (CaseInfo, [Int])

data Op
    = Round | ISqrt
    | Add | Sub | Mod | LessEq | EqInt
    | YOp | SeqOp
    deriving (Eq, Show)

pattern Op1 op x    = Delta op [x]
pattern Op2 op x y  = Delta op [x, y]

pattern Y s a       = Op1 YOp (Lam s a)
pattern Seq a b     = Op2 SeqOp a b
pattern Int i       = Lit (LInt i)

infixl 4 `App`

data EnvPiece
    = EApp !EExp
    | ECase CaseInf ![EExp]
    | EDelta !Op ![Lit] ![EExp]
    | Update_ !DB
    deriving (Eq, Show)

data HNF
    = HLam VarInfo !EExp
    | HCon ConIndex ![DB]
    | HLit !Lit
    | HVar_ !DB
    | HPiece !EnvPiece !HNF
    | HLet !Int ![EExp] !HNF
    deriving (Eq, Show)

zipWith' f (x: xs) (y: ys) = f x y !: zipWith' f xs ys
zipWith' _ _ _ = []
{-
f <$!> [] = []
f <$!> (a: as) = f a :! (f <$!> as)
-}
a !: as = a `seq` as `seq` (a: as)

[] ++! xs = xs
(x: xs) ++! ys = x !: (xs ++! ys)

pattern Update i = Update_ (Pos i)

pattern HVar i  = HVar_ (Pos i)
pattern HFree i = HVar_ (Neg i)

pattern Neg i <- (getNeg -> Just i)
  where Neg i =  negate i - 1

getNeg i | i < 0 = Just $ negate i - 1
getNeg _ = Nothing

pattern Pos :: Int -> Int
pattern Pos i <- (getPos -> Just i)
  where Pos i =  i

getPos i | i >= 0 = Just i
getPos _ = Nothing

data EExp
    = ExpC !Int ![EExp] !HNF
    | ErrExp
    deriving (Eq, Show)

pattern SExp :: HNF -> EExp
pattern SExp e <- ExpC 0 _ e
  where SExp = ExpC 0 []

pattern ERef r = SExp (HVar_ r)

pattern LExp n ls v = ExpC n ls (HVar_ v)

-------------------------------------- max db index

newtype MDB = MDB {getMDB :: Int}
    deriving (Eq, Show)

instance Monoid MDB where
    mempty = MDB 0
    MDB n `mappend` MDB m = MDB $ n `max` m

------------------------------------- rearrange De Bruijn indices

class Rearrange a where
    rearrange :: (Int -> Int) -> Int -> a -> a

instance Rearrange a => Rearrange [a] where
    rearrange f i xs = rearrange f i <$!> xs

instance Rearrange EExp
  where
    rearrange _ _ ErrExp = ErrExp
    rearrange f l_ (ExpC n ls e) = ExpC n (rearrange f l ls) $ rearrange f l e
      where
        l = l_ + n

instance Rearrange EnvPiece
  where
    rearrange f l = \case
        EApp e          -> EApp $ rearrange f l e
        ECase is@(_, i) es -> ECase is $ zipWith' (rearrange f . (l +)) i es
        EDelta o ls es  -> EDelta o ls $ rearrange f l es
        Update_ i       -> Update_ $ atL f l i

instance Rearrange HNF
  where
    rearrange f l = \case
        HLam i e    -> HLam i $ rearrange f (l+1) e
        HCon i ns   -> HCon i $ atL f l <$!> ns
        HVar_ i     -> HVar_ $ atL f l i
        HPiece p e  -> HPiece (rearrange f l p) $ rearrange f l e
        x@HLit{}    -> x

instance Rearrange Exp
  where
    rearrange f l = \case
        Var_ i      -> Var_ $ atL f l i
        Lam i e     -> Lam i $ rearrange f (l+1) e
        App e e'    -> App (rearrange f l e) (rearrange f l e')
        Con i es    -> Con i $ rearrange f l es
        Case is@(_, i) e es -> Case is (rearrange f l e) $ zipWith (rearrange f . (l +)) i es
        Delta d es  -> Delta d $ rearrange f l es
        x           -> x

----------

rearrange' f = rearrange f 0

up _ 0 = id
up l n = rearrange (+n) l

up' = up 0

-----------------------------------------

(<&>) = flip (<$>)

addI f l i | i < l = return 
addI f l i = f (i-l)

atL f l i | i < l = i
atL f l i = aadd l $ f (i-l)

aadd l (Pos i) = l + i
aadd l i = i

class FVs a where
    fv :: Monad m => (Int -> b -> m b) -> Int -> a -> b -> m b
    sfv :: (Int -> Int) -> Int -> a -> a
    open :: Int -> Int -> a -> a

instance FVs a => FVs [a] where
    fv l f [] = return
    fv l f (x: xs) = fv l f x >=> fv l f xs

    sfv l f xs = sfv l f <$!> xs

    open l f xs = open l f <$!> xs

instance (FVs a, FVs b) => FVs (a, b) where
    fv l f (a, b) = fv l f a >=> fv l f b

    sfv f l (a, b) = (sfv f l a, sfv f l b)

    open f i (a, b) = (open f i a, open f i b)

instance FVs EExp where
    fv f l ErrExp = return
    fv f l (ExpC n ls e) = fv f l' ls >=> fv f l' e
      where l' = l + n

    sfv f l ErrExp = ErrExp
    sfv f l (ExpC n ls e) = ExpC n (sfv f l' ls) (sfv f l' e)
      where l' = l + n

    open f l ErrExp = ErrExp
    open f l (ExpC n ls e) = ExpC n (open f l' ls) (open f l' e)
      where l' = l + n

instance FVs EnvPiece where

    fv f l = \case
        EApp e          -> fv f l e
        ECase (_, i) es -> foldr (>=>) return $ zipWith (fv f . (l +)) i es
        EDelta o ls es  -> fv f l es
        Update_ i       -> addI f l i

    sfv f l = \case
        EApp e          -> EApp $ sfv f l e
        ECase is@(_, i) es -> ECase is $ zipWith' (sfv f . (l +)) i es
        EDelta o ls es  -> EDelta o ls $ sfv f l es
        Update_ i       -> Update_ $ atL f l i

    open f l = \case
        EApp e          -> EApp $ open f l e
        ECase is@(_, i) es -> ECase is $ zipWith' (open f . (l +)) i es
        EDelta o ls es  -> EDelta o ls $ open f l es
        Update_ i       -> Update_ $ openL f l i

instance FVs HNF where

    fv f l = \case
        HLam i e    -> fv f (l+1) e
        HCon i ns   -> foldr (>=>) return $ addI f l <$!> ns
        HVar_ i     -> addI f l i
        HPiece p e  -> fv f l p >=> fv f l e
        HLit{}      -> return

    sfv f l = \case
        HLam i e    -> HLam i $ sfv f (l+1) e
        HCon i ns   -> HCon i $ atL f l <$!> ns
        HVar_ i     -> HVar_ $ atL f l i
        HPiece p e  -> HPiece (sfv f l p) $ sfv f l e
        x@HLit{}    -> x

    open f l = \case
        HLam i e    -> HLam i $ open f (l+1) e
        HCon i ns   -> HCon i $ openL f l <$!> ns
        HVar_ i     -> HVar_ $ openL f l i
        HPiece p e  -> HPiece (open f l p) $ open f l e
        x@HLit{}    -> x

openL f l (Neg i) | i >= f = i - f + l
openL f l i = i

-----------------------------------------

type GCConfig = (Int, Int, Int, Int)

defaultConfig = (20000, 10000, max 0 $ 10000 - 20, 20)

hnf = hnf_ defaultConfig

hnf_ gcconfig e_
     = open ii 0 $ steps gcconfig -- $ join (trace . ("\n------------\n" ++) . ppShow)
        $ preprocess e
  where
    (e, MDB ii) = runWriter $ closeExp ii 0 e_

    closeExp f l = \case
        Free i      -> tell (MDB $ i + 1) >> return (Free i)
        Var i       -> return $ if i >= l then Free $ i - l + f else Var i
        Lam i e     -> Lam i <$> closeExp f (l+1) e
        App e e'    -> App <$> closeExp f l e <*> closeExp f l e'
        Con i es    -> Con i <$> traverse (closeExp f l) es
        Case is@(_, i) e es -> Case is <$> closeExp f l e <*> zipWithM (\ns -> closeExp f (l + ns)) i es
        Delta d es  -> Delta d <$> traverse (closeExp f l) es
        x           -> return x

preprocess :: Exp -> EExp
preprocess = \case
    Lit l       -> SExp $ HLit l
    Var_ i      -> SExp $ HVar_ i
    Lam i e     -> SExp $ HLam i $ hnf e
    Y s e       -> ExpC (n+1) (ls ++ [({-s,-} SExp f)]) (HVar n)
      where ExpC n ls f = hnf e
    Delta d (e: es) -> add' (EDelta d [] $ preprocess <$!> es) $ preprocess e
    App e f         -> add' (EApp $ letify "u" $ preprocess f) $ preprocess e
    Case is@(_, i) e es -> add' (ECase is $ zipWith' (\ns -> if ns == 0 then preprocess else hnf) i es) $ preprocess e
    Con i es        -> foldl (app2 f) (SExp $ HCon i mempty) $ letify "r" . preprocess <$> es
      where
        f (HCon i vs) (HVar_ v) = HCon i $ vs ++ [v]
  where
    add' p (ExpC n ls e) = ExpC n ls $ HPiece (up' n p) e

    app2 g e@(ExpC n ls f) e'@(ExpC n' ls' f') = ExpC (n+n') (up n n' ls ++! up 0 n ls') f''
      where
        f'' = g (up n n' f) (up 0 n f')

    letify :: Info String -> EExp -> EExp
    letify s e@LExp{} = e
    letify s (ExpC n ls e) = LExp (n+1) (up n 1 $ ls <> [({-s,-} SExp e)]) n

-------------------------------------------------

nogc_mark = -1

type Vecs s = (Vec s EExp, Vec s EExp)

steps :: GCConfig -> EExp -> EExp
steps (gc1, gc2, gc3, gc4) e = runST (init e)
  where
    init :: forall s . EExp -> ST s EExp
    init (ExpC n ls e) = do
        v1 <- new n
        v2 <- new gc4
        v1' <- append v1 (n, ls)
        trace "-----" $ vsteps (n, 0, []) (v1', v2) [] e
      where
        vsteps :: (Int, Int, [Int]) -> Vecs s -> [EnvPiece] -> HNF -> ST s EExp

        vsteps sn ls ps (HPiece p e) = vsteps sn ls (p: ps) e

        vsteps sn ls@(v1@(len -> n), v2@(len -> n')) ps e@(HVar_ i)
            | i < 0 || i >= n + n' = final sn ls ps e
            | i < n = do
                (adjust (n + n') -> e) <- read_ v1 i
                if isHNF e
                  then addLets sn ls ps e
                  else write v1 i ErrExp >>= \v1 -> addLets sn (v1, v2) (Update i: ps) e
            | i < n + n' = do
                (adjust (n + n') -> e) <- read_ v2 (i-n)
                if isHNF e
                  then addLets sn ls ps e
                  else write v2 (i-n) ErrExp >>= \v2 -> addLets sn (v1, v2) (Update i: ps) e
        vsteps sn@(gc1, gc2, argh) ls@(v1@(len -> n), v2@(len -> n')) (p: ps) e
            | Update i <- p = if i < n
                then do
                    v1' <- write v1 i $ SExp e
                    vsteps (gc1, gc2, i: argh) (v1', v2) ps e
                else do
                    v2' <- write v2 (i - n) $ SExp e
                    vsteps sn (v1, v2') ps e
            | Just x <- dx (n + n') p e = addLets sn ls ps x
        vsteps sn ls ps e = final sn ls ps e

        final sn v ps e = majorGC sn v ps e $ \sn' (v1@(len -> n), _) ps' e' -> do
            ls' <- vToList v1
            return $ ExpC n ls' $ foldl (flip HPiece) e' ps'

        dx len (EApp (LExp n ls z)) (HLam i (ExpC n' ls' e))
            = Just $ ExpC (n + n') (rearrange' upFun ls ++! rearrange' fu ls') $ rearrange' fu e
              where
                z' = if z < 0 then z else if z < n then z + len else z - n
                fu i | i <  n'   = i + n + len
                     | i == n'   = z'
                     | otherwise = i - (1 + n')

                upFun i = if i < n then i + len else i - n

        dx len (ECase _ cs) (HCon (_, i) vs@(length -> n))
            | nn == 0 = Just e
            | otherwise = Just $ adjust' (\i -> if i < n' then i + len else if i < nn then vs !! (nn - 1 - i) else i - nn) e
          where
            !nn = n + n'
            !e@(ExpC n' _ _) = cs !! i
        dx len (EDelta SeqOp [] [f]) x
            | isHNF' x = Just $ adjust len f
            | otherwise = Nothing
        dx len (EDelta o lits (ExpC n ls f: fs)) (HLit l)
            = Just $ adjust len $ ExpC n ls $ HPiece (EDelta o (l: lits) fs) f
        dx len (EDelta o lits []) (HLit l)
            = Just $ SExp $ delta o $ l: lits
        dx _ _ _ = Nothing

        addLets sn ls ps (SExp e) = vsteps sn ls ps e
        addLets sn ls@(v1, v2) ps (ExpC n' xs e) = do
            v2' <- append v2 (n', xs)
            mkGC sn (v1, v2') ps e

        mkGC sn@(mg, sn_, xx) v@(len -> n, len -> n') ps e
            | n' < gc2          = vsteps (mg, sn_ + 1, xx) v ps e
            | n + n' - mg < gc1 = minorGC sn v ps e
            | otherwise         = majorGC sn v ps e vsteps

        adjust _ e@SExp{} = e
        adjust n e@(ExpC n' _ _) = adjust' (\i -> if i < n' then i + n else i - n') e

        adjust' fu (ExpC n' xs e) = ExpC n' (rearrange' fu xs) (rearrange' fu e)

        minorGC :: (Int, Int, [Int]) -> Vecs s -> [EnvPiece] -> HNF -> ST s EExp
        minorGC (mg, sn, argh) (v1@(len -> n), v2@(len -> n')) ps e = do
          fv2 <- freezedRead v2
          genericGC_ fv2 n n' $ \mark co -> do
            let cc (xx, acc) i = do
                    e <- read_ v1 i
                    (same, xx') <- fv (\i (same, b) -> (,) False <$> mark i b) n e (True, xx)
                    return (xx', if same then acc else i: acc)

            let !la = length argh
            (xx', argh') <- foldM cc (0, []) argh
            let !la' = length argh'
            s <- fv mark n (ps, e) xx'
            append v1 (s, []) >>= \vv -> co vv $ \fvi v1'@(len -> n'') ->
                trace ("minor gc: " ++ show (n - la) ++ " + " ++ show (la - la') ++ " + " ++ show la' ++ " + " ++ show xx' ++ " + " ++ show (n' - xx') ++ " - " ++ show (n + n' - n'')) $ do
                    v1'' <- foldM (\v i -> modify v i $ sfv fvi n) v1' argh'
                    v2' <- new gc3
                    vsteps (mg, sn + 1, []) (v1'', v2') (sfv fvi n ps) (sfv fvi n e)

        majorGC :: (Int, Int, [Int]) -> Vecs s -> [EnvPiece] -> HNF
                -> ((Int, Int, [Int]) -> Vecs s -> [EnvPiece] -> HNF -> ST s e)
                -> ST s e
        majorGC (_, sn, argh) v@(v1@(len -> n), v2@(len -> n')) ps e cont = do
          fv1 <- freezedRead v1
          fv2 <- freezedRead v2
          let read2 i = if i < n then fv1 i else fv2 (i - n)
          genericGC_ read2 0 (n + n') $ \mark co -> do
            s <- fv mark 0 (ps, e) 0
            new s >>= \v -> append v (s, []) >>= \vv -> co vv $ 
              \fvi v1'@(len -> n'') ->
                trace ("major gc: " ++ show n ++ " + " ++ show n' ++ " - " ++ show (n + n' - n'')) $ do
                    v2' <- new gc3
                    cont (n'', sn + 1, []) (v1', v2') (sfv fvi 0 ps) (sfv fvi 0 e)

        genericGC_ read_ n len cont = do
            vi <- UV.replicate len nogc_mark
            cont (mark vi read_ n []) $ \vv cont -> do
                (PUV.unsafeIndex -> fvi) <- PUV.unsafeFreeze vi
                let sweep i v | i == len = return v
                    sweep i v = do
                        let !ma = fvi i
                        if ma == nogc_mark then sweep (i+1) v else
                            case read_ i of
                              ERef r | r >= n -> sweep (i+1) v
                              e -> sweep (i+1) =<< write v (ma + n) (sfv fvi n e)
                cont fvi =<< sweep 0 vv
         where
            mark vi read_ n acc i t = do
                ma <- UV.unsafeRead vi i
                if ma /= nogc_mark then writes ma >> return t else
                    case read_ i of
                      ERef r | r >= n -> mark vi read_ n (i: acc) (r - n) t
                      e -> do
                        writes t
                        UV.unsafeWrite vi i t
                        fv (mark vi read_ n []) n e $ t+1
              where
                writes t = forM_ acc $ \i -> UV.unsafeWrite vi i t

delta ISqrt             [LInt i] = HLit $ LInt $ round $ sqrt $ fromIntegral i
delta LessEq    [LInt j, LInt i] = mkBool $ i <= j
delta EqInt     [LInt j, LInt i] = mkBool $ i == j
delta Add       [LInt j, LInt i] = HLit $ LInt $ i + j
delta Sub       [LInt j, LInt i] = HLit $ LInt $ i - j
delta Mod       [LInt j, LInt i] = HLit $ LInt $ i `mod` j
delta o ls = error $ "delta: " ++ show o ++ "\n" ++ show ls

mkBool b = HCon (if b then ("True", 1) else ("False", 0)) mempty

isHNF (SExp x) = isHNF' x
isHNF _ = False

isHNF' HVar_{} = False
isHNF' HPiece{} = False
isHNF' _ = True

--------------------------------------------------------------- pretty print

newtype Info a = Info {getInfo :: a}

instance Eq (Info a) where _ == _ = True
instance Show a => Show (Info a) where show (Info s) = show s
instance IsString a => IsString (Info a) where fromString = Info . fromString

type VarInfo = Info String
type ConInfo = String
type CaseInfo = [(String, [String])]

instance PShow Lit where
    pShow (LInt i)   = pShow i
    pShow (LChar i)  = pShow i
    pShow (LFloat i) = pShow i

instance Show Lit where show = ppShow

shLet [] x = x
shLet ls x = foldl (flip DFreshName) (DLet' (foldr1 DSemi $ zipWith (\i (_, e) -> DOp "=" (Infix (-1)) (dVar i) e) [0..] ls) x) (Just . getInfo . fst <$> ls)

shCase cn e xs = DPreOp (-20) (ComplexAtom "case" (-10) e (SimpleAtom "of"))
    $ foldr1 DSemi
    [ foldr DFreshName
        (DArr_ "->" (foldl DApp (text a) $ dVar <$> reverse [0..length n - 1])
                    b
        )
        $ Just <$> n
    | ((a, n), b) <- zip cn xs]

shLam n b = DFreshName (Just n) $ showLam (DVar 0) b

showLam x (DFreshName u d) = DFreshName u $ showLam (DUp 0 x) d
showLam x (DLam xs y) = DLam (DSep (InfixR 11) x xs) y
showLam x y = DLam x y

instance PShow HNF where
    pShow = \case
        HLam n e -> shLam (getInfo n) $ pShow e
        HCon (s, _) is -> foldl DApp (text s) $ dVar <$> is
        HLit l -> pShow l
        HVar_ i -> dVar i
        HPiece p e -> showPiece (pShow e) p

dVar (Pos i) = DVar i
dVar (Neg i) = text $ "v" ++ show i

instance PShow EExp where
    pShow ErrExp = text "_|_"
    pShow (ExpC _ ls e) = shLet ((,) "x" . pShow <$> ls) $ pShow e

showPiece e = \case
    EApp x -> e `DApp` pShow x
    ECase (cns, _) xs -> shCase cns e $ pShow <$> xs
    Update_ i -> DOp "@" (InfixR 14) (dVar i) e
    EDelta o ls es -> shDelta o $ (pShow <$> ls) ++ e: (pShow <$> es)
{-
instance PShow Exp where
    pShow = \case
        Var i -> DVar i
        Free i -> text $ "v" ++ show i
        Lam n e -> shLam (getInfo n) $ pShow e
        App a b -> pShow a `DApp` pShow b
        Con (s, _) is -> foldl DApp (text s) $ pShow <$> is
        Case (cns, _) e xs -> shCase cns (pShow e) $ pShow <$> xs
        Lit l -> pShow l
        Delta o es -> shDelta o $ pShow <$> es
-}
--shDelta ISqrt [x]    =
shDelta SeqOp [a, b] = DOp "`seq`" (Infix 1) a b
shDelta EqInt [x, y] = DOp "==" (Infix 4) x y
shDelta Add [x, y]   = DOp "+" (InfixL 6) x y
shDelta Sub [x, y]   = DOp "-" (InfixL 6) x y
shDelta Mod [x, y]   = DOp "`mod`" (InfixL 7) x y
shDelta o xs = foldl DApp (text $ show o) xs

---------------------------------------------------------------------------------------- examples

--pPrint = putStrLn . ppShow

pattern F = Con ("False", 0) []
pattern T = Con ("True", 1) []
pattern ENil = Con ("[]", 0) []
pattern ECons a b = Con ("ECons", 1) [a, b]

mkCase a b c = Case (a, map (length . snd) a) b c

caseBool x f t = mkCase [("False", []), ("True", [])] x [f, t]
caseList x n c = mkCase [("[]", []), ("ECons", ["c", "cs"])] x [n, c]

id_ = Lam "x" (Var 0)

if_ b t f = caseBool b f t

not_ x = if_ x F T

test = id_ `App` id_ `App` id_ `App` id_ `App` Int 13

test' = id_ `App` (id_ `App` Int 14)

foldr_ f e = Y "g" $ Lam "as" $ caseList (Var 0) (up' 2 e) (up' 4 f `App` Var 1 `App` (Var 3 `App` Var 0))

filter_ p = foldr_ (Lam "y" $ Lam "ys" $ if_ (up' 2 p `App` Var 1) (ECons (Var 1) (Var 0)) (Var 0)) ENil

and2 a b = if_ a b F

and_ = foldr_ (Lam "a" $ Lam "b" $ and2 (Var 1) (Var 0)) T

map_ f = foldr_ (Lam "z" $ Lam "zs" $ ECons (up' 2 f `App` Var 1) (Var 0)) ENil

neq a b = not_ $ Op2 EqInt a b

from_ = Y "from" $ Lam "n" $ ECons (Var 0) $ Var 1 `App` Op2 Add (Var 0) (Int 1)

undefined_ = Y "undefined" $ Var 0

idx = Y "idx" $ Lam "xs" $ Lam "n" $ caseList (Var 1) undefined_ $ if_ (Op2 EqInt (Var 2) $ Int 0) (Var 1) $ Var 4 `App` Var 0 `App` (Op2 Sub (Var 2) $ Int 1)

t = idx `App` (from_ `App` Int 3) `App` Int 5

takeWhile_ = Y "takeWhile" $ Lam "p" $ Lam "xs" $ caseList (Var 0) ENil $ if_ (Var 3 `App` Var 1) (ECons (Var 1) $ Var 4 `App` Var 3 `App` Var 0) ENil

sum_ = foldr_ (Lam "a" $ Lam "b" $ Op2 Add (Var 1) (Var 0)) (Int 0)

sum' = Y "sum" $ Lam "xs" $ caseList (Var 0) (Int 0) $ Op2 Add (Var 1) $ Var 3 `App` Var 0

infixl 4 `sApp`

sApp a b = Lam "s" (Seq (Var 0) (up' 1 a `App` Var 0)) `App` b

{-
accsum acc [] = acc
accsum acc (x: xs) = let z = acc + x `seq` accsum z xs
-}
accsum = Y "accsum" $ Lam "acc" $ Lam "xs" $ caseList (Var 0) (Var 1) $ Var 4 `sApp` Op2 Add (Var 3) (Var 1) `App` Var 0

fromTo = Y "fromTo" $ Lam "begin" $ Lam "end" $ ECons (Var 1) $ if_ (Op2 EqInt (Var 0) (Var 1)) ENil $ Var 2 `App` Op2 Add (Var 1) (Int 1) `App` Var 0

from = Y "from" $ Lam "begin" $ ECons (Var 0) $ Var 1 `App` Op2 Add (Var 0) (Int 1)

t' n = sum' `App` (fromTo `App` Int 0 `App` Int n)

t'' n = accsum `App` Int 0 `App` (fromTo `App` Int 0 `App` Int n)

t_opt n = Y "optsum" (Lam "i" $ if_ (Op2 EqInt (Int n) (Var 0)) (Var 0) (Op2 Add (Var 0) $ Var 1 `App` Op2 Add (Int 1) (Var 0))) `App` Int 0

t_seqopt n = Y "seqoptsum" (Lam "i" $ Lam "j" $ if_ (Op2 EqInt (Int n) (Var 0)) (Op2 Add (Int n) (Var 1)) (Var 2 `sApp` Op2 Add (Var 0) (Var 1) `sApp` Op2 Add (Int 1) (Var 0))) `App` Int 0 `App` Int 0

mod_ = Op2 Mod

isqrt = Op1 ISqrt

le = Op2 LessEq

primes = Y "primes"
    $ ECons (Int 2) $ ECons (Int 3)
    $ filter_ (Lam "n" $ and_ `App` (map_ (Lam "p" $ neq (Int 0) $ mod_ (Var 1) (Var 0)) `App` (takeWhile_ `App` (Lam "x" $ le (Var 0) $ isqrt $ Var 1) `App` Var 1))) `App` (from `App` Int 5)
-- primes = 2:3: filter (\n -> and $ map (\p -> n `mod` p /= 0) (takeWhile (\x -> x <= iSqrt n) primes)) (from 5)


nthPrime n = idx `App` primes `App` (Int $ n-1)


twice = Lam "f" $ Lam "x" $ Var 1 `App` (Var 1 `App` Var 0)
twice2 = Lam "f" $ Lam "x" $ Var 1 `sApp` (Var 1 `App` Var 0)

inc = Lam "n" $ Op2 Add (Int 1) (Var 0)

test'' = Lam "f" (Int 4) `App` Int 3

twiceTest n = (Lam "twice" $ (iterate (`App` Var 0) (Var 0) !! n) `App` inc `App` Int 0) `App` twice
twiceTest2 n = (Lam "twice" $ (iterate (`App` Var 0) (Var 0) !! n) `App` inc `App` Int 0) `App` twice2

tests =
    [ t test (Int 13)
    , t test' (Int 14)
    , t test'' (Int 4)
    , t (t' 10) (Int 55)
    , t (t'' 10) (Int 55)
    , t (nthPrime 6) (Int 13)
    ]
  where t = (,)

evalTests = case [(a, b) | (hnf -> a, hnf -> b) <- tests, a /= b] of
    [] -> True
    (a, b): _ -> error $ "tests:\n" ++ ppShow a ++ "\n------ /= -------\n" ++ ppShow b 


main | evalTests = do
    [s, read -> m, read -> m', read -> g3, n] <- getArgs
    putStrLn . (++"\n---------------") . ppShow $ 
        hnf_ (m, m', max 0 $ m' - g3, g3) $ prog s $ read n

prog = \case
    "prime" -> nthPrime
    "seq" -> t''
    "sum" -> t'
    "opt" -> t_opt
    "seqopt" -> t_seqopt
    "twice" -> twiceTest
    "twice2" -> twiceTest2