summaryrefslogtreecommitdiff
path: root/prototypes/TCReduce.hs
blob: ed2922730b0d795cbff9bdfcb4150036264e8cee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
-- Ideas taken from http://www.andres-loeh.de/LambdaPi/
-- and "Efficient Bracket Abstraction Using Iconic Representations for Combinators" by Antoni Diller
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveFunctor #-}

import Control.Monad.Except
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Identity
import Control.Arrow
import Data.Maybe
import Data.List
import Data.Char
import Text.ParserCombinators.Parsec hiding (parse)
import qualified Text.ParserCombinators.Parsec as P
import Text.ParserCombinators.Parsec.Token
import Text.ParserCombinators.Parsec.Language
import System.Console.Readline
import qualified Data.Map as Map
import Text.Show.Pretty (ppShow)
import Debug.Trace
import System.Environment

import Unsafe.Coerce
{- possible improvements
- use Bound
- remove Tag
- review sharing, tests
- VPi, VStar -> VCCon ...
- unify data types
-}
--------------------------------------------------------------------------------

data CTerm_ t
    = Inf (ITerm_ t)
    | Lam (CTerm_ t)
    deriving (Eq, Show)

type CTerm = CTerm_ Var
type ITerm = ITerm_ Var

data Var
    = Bound_ !Int
    | Global_ String
    deriving (Eq, Ord, Show)

pattern Bound a = Var (Bound_ a)
pattern Global a = Var (Global_ a)

data ITerm_ t
    = Ann (CTerm_ t) (CTerm_ t)
    | Star
    | Pi Relevance (CTerm_ t) (CTerm_ t)
    | Var t

    | CCon CConName [CTerm_ t] [CTerm_ t]
    | ITCon TConName [CTerm_ t]
    | IInt !Int

    -- neutral
    | ITerm_ t :$: CTerm_ t

    | ICase TConName [CTerm_ t] (CTerm_ t) [CTerm_ t] [CTerm_ t] (CTerm_ t)
    | Prim PrimName' [CTerm_ t]
    deriving (Eq, Show) -- , Functor)

data Value_ f t
    -- real values
    = VLam_ !(f t)
    | VCCon_ !Int [t]
    | VInt_ !Int

    -- type values
    | VStar_
    | VPi_ Relevance t (f t)
    | VCon_ !TConName [t]

    -- neutral values
    | VNeutral_ (Neutral_ t)
    | VTag_ (Neutral_ t) t      -- todo: eliminate
--    deriving Functor

type Neutral = Neutral_ Value
data Neutral_ t
    = NLocal !Int
    | NQuote !Int
    | NApp (Neutral_ t) t

    | NCase t [t] (Neutral_ t)
    | NPrim PrimName' [t]
--    deriving Functor

newtype Value = V {unV :: Value_ ((->) Value) Value}

type Type = Value

data IConName = Nat | Int | Bool' | UName !Int
    deriving (Eq)

data PrimName = Add | Fix | Sub | Mod | Sqrt | IntEq | IntLess
    deriving (Show, Eq, Enum)

data CConName = CConName !Int String TConName Type

data TConName = TConName !IConName String !Int{-num of params-} Type{-type-} [CConName]{-constructors-} Type{-case type-}

data PrimName' = PrimName' !PrimName String ([Value] -> Value) Type

data Relevance = Irr | TRel | Rel
    deriving (Eq, Show)

----------------

type Env = [Value]
type NameEnv v = Map.Map String v

type TEnv = NameEnv ((EnvValue, Value), Type)

type EnvValue2 = (EnvValue, Env -> Value)

--------------------------------------------------------------------------------

pattern VLam f = V (VLam_ f)
pattern VPi r a b = V (VPi_ r a b)
pattern VNeutral a = V (VNeutral_ a)
pattern VStar = V VStar_
pattern VTag a b = V (VTag_ a b)
pattern VCCon a b = V (VCCon_ a b)
pattern VCon a b = V (VCon_ a b)
pattern VInt a = V (VInt_ a)

instance Show Value where
    show = show . quote0 tInt -- (error "show value")
{-
instance Eq ITerm where
    Star == Star = True
    Bound i == Bound j = i == j
    _ == _ = False  -- TODO
-}
instance Show CConName where show (CConName _ s _ _) = s
instance Eq CConName where CConName i _ _ _ == CConName j _ _ _ = i == j

instance Show TConName where show (TConName _ s _ _ _ _) = s
instance Eq TConName where TConName i _ _ _ _ _ == TConName j _ _ _ _ _ = i == j

instance Show PrimName' where show (PrimName' _ s _ _) = s
instance Eq PrimName' where PrimName' i _ _ _ == PrimName' j _ _ _ = i == j

--------------------------------------------------------------------------------

infixr 4 ~>

(~>) :: Value -> Value -> Value
a ~> b = VPi Rel a (\_ -> b)

iPi r a = Inf . Pi r a

tnBool = TConName Bool' "Bool" 0 VStar [cFalse, cTrue] tElimBool
cFalse = CConName 0 "False" tnBool tBool
cTrue = CConName 1 "True" tnBool tBool
tBool = VCon tnBool []
vFalse = VCCon 0 []
vTrue = VCCon 1 []
tElimBool = VPi TRel (VPi Rel tBool $ \_ -> VStar) $ \m -> (m `vappT` vFalse) ~> (m `vappT` vTrue) ~> VPi Rel tBool (\n -> m `vappT` n)

vBool False = vFalse
vBool True = vTrue

tnNat = TConName Nat "Nat" 0 VStar [cZero, cSucc] tElimNat
cZero = CConName 0 "Zero" tnNat tNat
cSucc = CConName 1 "Succ" tnNat $ tNat ~> tNat
tNat = VCon tnNat []
vZero = VCCon 0 []
vSucc x = VCCon 1 [x]
tElimNat = VPi TRel (VPi Rel tNat $ \_ -> VStar) $ \m -> (m `vappT` vZero) ~> VPi Rel tNat (\k -> m `vappT` vSucc k) ~> VPi Rel tNat (\n -> m `vappT` n)

toNat :: Integer -> ITerm
toNat 0 = CCon (CConName 0 "Zero" tnNat tNat) [] []
toNat n = CCon (CConName 1 "Succ" tnNat $ tNat ~> tNat) [] [Inf $ toNat (n - 1)]

tInt = VCon (TConName Int "Int" 0 VStar (error "Intconstr") $ error "tElimInt") []

tenv = Map.fromList [("Int", (({-pure' tInt-} error "tyin", tInt), VStar))]

lams' :: Int -> ([Value] -> Value) -> Value
lams' i f = g i f id where
    g 0 f = \c -> f $ c []
    g i f = \c -> VLam $ \d -> g (i-1) f (c . (d:))

lamsT'' :: Value -> ([Value] -> Value) -> Value
lamsT'' i f = g i f id where
    g (VPi r _ h) f = ifT r (g (h $ vQuote undefined) f) $ \c -> VLam $ \d -> g (h $ vQuote undefined) f (c . (d:))
    g _ f = \c -> f $ c []

downTo n m = map (Inf . Bound) [n+m-1, n+m-2..n]

showPrimName n = "prim" ++ show n
primNames = Map.fromList [(showPrimName n, n) | n <- [Add .. IntLess]]

rels (VPi r v f) = r: rels (f $ vQuote undefined)
rels _ = []

arityq = length . rels

dropPi [] x = x
dropPi (t':ts) (Inf (Pi _ t'' t))
--    | t' /= t'' = error $ "dropPi: " ++ e ++ show (t', t'')
    | otherwise = dropPi ts t

nameOf = \case
    "Int" -> return Int
    "Bool" -> return Bool'
    "Nat" -> return Nat
    _ -> Nothing

addParams r ps t = foldr (iPi r) t ps

chain q ps end = f [] ps where
    f acc [] ty = end (reverse acc) ty
    f acc (x: xs) (VPi _ a b) = f (q a x: acc) xs (b x)

--------------------------------------------------------------------------------

--iSubst :: Int -> ITerm -> ITerm -> ITerm
iSubst f ii (Pi r ty ty')    = Pi r (cSubst' f ii ty) (cSubst' f (ii + 1) ty')
iSubst f ii (Bound j)      = f ii j
iSubst f ii (i :$: c)      = iSubst f ii i :$: cSubst' f ii c
iSubst f ii x              = case x of
    Ann a b -> Ann (g a) (g b)
    CCon con a b -> CCon con (g <$> a) (g <$> b)
    ITCon con a -> ITCon con (g <$> a)
    Prim con a -> Prim con (g <$> a)
    ICase con a b c d e -> ICase con (g <$> a) (g b) (g <$> c) (g <$> d) (g e)
    x   -> x
  where
    g = cSubst' f ii

--cSubst' :: Int -> ITerm -> CTerm -> CTerm
cSubst' f ii (Inf i)      =  Inf (iSubst f ii i)
cSubst' f ii (Lam c)      =  Lam (cSubst' f (ii + 1) c)

cSubst tt t = cSubst' (\ii j -> if ii == j then t else Bound j) tt
renum b = cSubst' $ \ii i -> Bound $ if i >= ii then i + b else i

--------------------------------------------------------------------------------

observe (VTag _ x) = x
observe x = x

vappT :: Value -> Value -> Value
vappT (VLam f) v = f v
vappT (VNeutral n) v = VNeutral (NApp n v)
vappT (VTag n f) v = VTag (NApp n v) $ observe $ vappT f v
vappT x v = error $ "vapp: " ++ show (x, v)

evalCaseT :: Value -> [Value] -> Value -> Value
evalCaseT m es n = case observe n of
    VCCon i args -> foldl vappT (es !! i) $ reverse args
    VNeutral n -> VNeutral $ NCase m es n
    x -> error $ "internal: eval caseT: " ++ show x

--------------------------------------------------------------------------------

vQuote = VNeutral . NQuote

quote0 :: Type -> Value -> CTerm
quote0 = quote 0

quote :: Int -> Type -> Value -> CTerm
quote ii (VPi Irr _ b) t = Lam $ quote (ii + 1) (b $ vQuote ii) $ t
quote ii (VPi _ _ b) (VLam t) = Lam $ quote (ii + 1) (b $ vQuote ii) $ t $ vQuote ii
quote ii ~VStar VStar = Inf Star
quote ii ~VStar (VPi r v f) = Inf $ Pi r (quote ii VStar v) $ quote (ii + 1) VStar $ f $ vQuote ii
quote ii t (VNeutral n) = Inf $ snd $ neutralQuote' ii n
quote ii _ (VCon con@(TConName _ _ _ ty _ _) vs) = ($ ty) $ chain (quote ii) vs $ \vs' -> const $ Inf $ ITCon con vs'
quote ii ~(VCon (TConName _ _ _ _ cs _)  ps) (VCCon i vs) = ($ ty) $ chain (quote ii) (take pnum ps) $ \ps' -> chain (quote ii) (reverse vs) $ \vs' -> const $ Inf $ CCon con ps' vs'
  where
    con@(CConName _ _ (TConName _ _ pnum _ _ _) ty) = cs !! i
quote ii t (VTag _ x) = quote ii t x
quote ii _ (VInt i) = Inf $ IInt i
--quote ii b c = error $ "quote: " ++ show (ii, c)

neutralQuote' :: Int -> Neutral -> (Type, ITerm)
neutralQuote' ii (NQuote k) | k >= 0 = (error "nq", Bound (ii - k - 1))
neutralQuote' ii (NApp n v) = (ty' v, f :$: quote ii ty v)  where (VPi _ ty ty', f) = neutralQuote' ii n
neutralQuote' ii (NPrim con@(PrimName' _ _ _ ty) ps) = ($ ty) $ chain (quote ii) ps $ \ps' rt -> (rt, Prim con ps')
neutralQuote' ii (NLocal i) = error "nq" --(t, Local i t)
neutralQuote' ii (NCase m ts x) = ($ ty) $ chain (quote ii) (take pnum ps_) $ \ps' -> chain (quote ii) [m] $ \[m'] -> chain (quote ii) ts $ \ts' -> chain (quote ii) (drop pnum ps_) $ \is' rt -> (rt, ICase con ps' m' ts' is' $ Inf x')
  where
    (VCon con@(TConName _ _ pnum _ _ ty) ps_, x') = neutralQuote' ii x

--------------------------------------------------------------------------------

quoteEq = eq 0 where

    eq, eq' :: Int -> Value -> Value -> Bool
    eq ii (VTag x _) (VTag x' _) | eqN ii x x' = True
    eq ii a b = eq' ii (observe a) (observe b)

    eq' ii (VLam t) (VLam t') = eq (ii + 1) (t $ vQuote ii) (t' $ vQuote ii)
    eq' ii (VPi r v f) (VPi r' v' f') = r == r' && eq ii v v' && eq (ii + 1) (f $ vQuote ii) (f' $ vQuote ii)
    eq' ii VStar VStar = True
    eq' ii (VNeutral n) (VNeutral n') = eqN ii n n'
    eq' ii (VCon con vs) (VCon con' vs') = con == con' && eqs ii vs vs'
    eq' ii (VCCon con vs) (VCCon con' vs') = con == con' && eqs ii vs vs'
    eq' ii _ _ = False

    eqN :: Int -> Neutral -> Neutral -> Bool
    eqN ii (NLocal v) (NLocal v') = v == v'
    eqN ii (NQuote k) (NQuote k') = k == k'
    eqN ii (NApp n v) (NApp n' v') =  eqN ii n n' && eq ii v v'
    eqN ii (NCase m ts x) (NCase m' ts' x') = eqN ii x x' && eqs ii (m: ts) (m': ts')
    eqN ii _ _ = False

    eqs ii vs vs' = all (uncurry $ eq ii) (zip vs vs')

--------------------------------------------------------------------------------

idx 0 = \(x:_) -> x
idx 1 = \(_:x:_) -> x
idx 2 = \(_:_:x:_) -> x
idx 3 = \(_:_:_:x:_) -> x
idx 4 = \(_:_:_:_:x:_) -> x
idx 5 = \(_:_:_:_:_:x:_) -> x
idx 6 = \(_:_:_:_:_:_:x:_) -> x
idx 7 = \(_:_:_:_:_:_:_:x:_) -> x
idx 8 = \(_:_:_:_:_:_:_:_:x:_) -> x
idx 9 = \(_:_:_:_:_:_:_:_:_:x:_) -> x
idx n = \(_:_:_:_:_:_:_:_:_:_:xs) -> idx (n-10) xs

adj q rs i = sum $ map (\(r, _) -> q r 0 1) $ take i rs

ifV Rel _ a = a
ifV _ x _ = x

ifT Irr a _ = a
ifT _ _ x = x

appLoc t = asks $ (\n -> t $ map (VNeutral . NLocal) [n-1,n-2..0]) . length . fst

type TCM m = ReaderT ([(Relevance, Value)], TEnv) (ExceptT String m)
type AddM m = StateT (TEnv, Int) (ExceptT String m)

convM :: Monad m => TCM m a -> AddM m a
convM m = gets fst >>= \te -> lift $ flip runReaderT ([], te) m

cTEval e t = convM $ ($ []) . snd <$> cType e t
cIEval t = convM $ ((id *** ($ [])) *** id) <$> iType t

cType :: Monad m => CTerm -> Type -> TCM m EnvValue2
cType (Inf e) v = do
    (x, v') <- iType e
    unless (quoteEq v v') (throwError ("type mismatch:\n" ++ "type inferred:  " ++ show v' ++ "\n" ++ "type expected:  " ++ show v ++ "\n" ++ "for expression: " ++ show e))
    return x
cType (Lam e) (observe -> VPi r ty ty') = do
    li <- asks $ VNeutral . NLocal . length . fst
    (x1, x2) <- local (((r, ty):) *** id) $ cType e $ ty' li
    return (ifV r x1 $ EVLam x1, ifT r x2 $ \d -> VLam (x2 . (: d)))
cType x y = throwError $ "type mismatch2:\n" ++ "term:  " ++ show x ++ "\ntype:  " ++ show y

iType :: Monad m => ITerm -> TCM m (EnvValue2, Type)
iType (Ann e tyt) = do
    (_, ty) <- cType tyt VStar
    x <- appLoc ty
    v <- cType e x
    return (v, x)
iType Star = return (({-pure' VStar-} error "starr", pure VStar), VStar)
iType (Pi r tyt tyt') = do
    (ty1, ty2) <- cType tyt VStar
    tt <- appLoc ty2
    (x1, x2) <- local (((Rel, tt):) *** id) $ cType tyt' VStar
    return (({-VPi r <$> ty1 <*> (x1 .) . flip (:)-} error "ittt", \d -> VPi r (ty2 d) (x2 . (: d))), VStar)
iType (Bound i) = asks $ \(ii, _) -> ((EVBound $ adj ifV ii i, idx $ adj ifT ii i), snd $ ii !! i)
iType (Global n) = asks (Map.lookup n . snd) >>= \case
    Just ((v1, v2), ty)   ->  return ((v1, pure v2), ty)
    Nothing        ->  throwError ("unknown identifier: " ++ n)
iType (e1 :$: e2) = do
    ((vi1, vi2), observe -> VPi r ty ty') <- iType e1
    (vb1, vb2) <- cType e2 ty
    tt <- appLoc vb2
    return ((ifV r vi1 $ vi1 .$ vb1, ifT r vi2 $ vappT <$> vi2 <*> vb2), ty' tt)
iType (ITCon con@(TConName _ _ _ ty _ _) ts) =
    (({-(VCon con <$>) . sequenceA . reverse-} error "itt" *** (VCon con . reverse <$>)) *** id) <$> foldM icont' (([], const []), ty) ts
iType (CCon con@(CConName i _ _ ty) ps ts) =
    (({-(VCCon con <$>) . sequenceA . reverse-} error "itt" *** (VCCon i <$>)) *** id) <$> foldM icont' (([], const []), ty) (ps ++ ts)
iType (IInt i) = return ((EVInt i, const $ VInt i), tInt)
iType (ICase con@(TConName _ _ _ _ _ ty) ps m ts ps' n) = error "icase"

icont' :: Monad m => (([EnvValue], Env -> [Value]), Type) -> CTerm -> TCM m (([EnvValue], Env -> [Value]), Type)
icont' ((vi1, vi2), observe -> VPi r ty ty') e2 = do
    (vb1, vb2) <- cType e2 ty
    tt <- appLoc vb2
    return ((ifV r vi1 $ vb1: vi1, ifT r vi2 $ (:) <$> vb2 <*> vi2), ty' tt)

--------------------------------------------------------------------------------

data EnvValue
    = EVLam EnvValue
    | EVApp [Int] EnvValue EnvValue
    | EVPrim PrimName
    | EVCase [Int]
    | EVCon Int Int Int
    | EVInt Int
    | EVBound !Int

--evCon 2 0 0 = EVLam $ EVLam $ EVBound 1
--evCon 2 1 0 = EVLam $ EVLam $ EVBound 0
--evCon 2 1 2 = EVLam $ EVLam $ EVLam $ EVLam $ EVBound 0 .$ EVBound 3 .$ EVBound 2
evCon i j k = EVCon i j k

--evCase is = case length is of 2 -> EVLam $ EVLam $ EVLam $ EVBound 0 .$ EVBound 2 .$ EVBound 1
evCase is = EVCase is

grad x = 1 + maximum ((-1): freeVars x)

freeVars = \case
    EVBound b -> b: []
    EVLam x -> filter (>=0) $ map (+(-1)) $ freeVars x
    EVApp gr _ _ -> gr
    _ -> []

EVLam z .$ b | null c || c == [0] || inlineable b = ssubst_ comp 0 z
  where
    c = count' 0 z
    comp i j = case compare i j of
        EQ -> ssubst_ (\i' j' -> EVBound $ j' + if j' >= i' then i else 0) 0 b
        LT -> EVBound (j-1)
        GT -> EVBound j
    inlineable = \case
        EVApp{} -> False
        x@EVLam{} -> null (tail c) -- && null (freeVars x)
--        EVBound{} -> all (==0) c  || null (tail c)
        _ -> True
a .$ b = EVApp (freeVars a ++ freeVars b) a b

count' = ssubst__ (const []) (map (+1)) (++) $ \i j -> if i == j then [0] else []
ssubst_ = ssubst__ id EVLam (.$)

ssubst__ f l a b i = \case
    z | grad z <= i -> f z
    EVLam v -> l $ ssubst__ f l a b (i + 1) v
    EVApp _ x y -> ssubst__ f l a b i x `a` ssubst__ f l a b i y
    EVBound j -> b i j
    x -> f x

--------------------------------------------------------------------------------

infixl 1 `YY`, `NN`, `NY`, `YN`

pattern SkipNY x = Skip x
pattern SkipY x = x

data GV x where
    GInt :: Int -> GV Int

    GSqrt :: GV (Int -> Int)
    GAdd :: GV (Int -> Int -> Int)
    GSub :: GV (Int -> Int -> Int)
    GMod :: GV (Int -> Int -> Int)
    GEq :: GV (Int -> Int -> a -> a -> a)
    GLess :: GV (Int -> Int -> a -> a -> a)

    GFix  :: GV ((a -> a) -> a)
    GFixS :: GV (a -> a) -> GV a
    GFixD :: GV (d -> a -> a) -> GV (d -> a)

    Con2_0_0 :: GV (a -> b -> a)
    Con2_1_0 :: GV (a -> b -> b)
    Con2_1_2 :: GV (x0 -> x1 -> c0 -> (x0 -> x1 -> e) -> e)

    Case2 :: GV (a -> b -> (a -> b -> c) -> c)

    Skip :: GV a -> GV (b -> a)
    SkipYN :: GV (d -> a) -> GV (d -> b -> a) -- (const .)
    Init :: GV (() -> a) -> GV a

    T2 :: GV ((a0, a1) -> e) -> GV (a0 -> a1 -> e) 

    Id :: GV (a -> a)
    Fst :: GV ((a, b) -> a)
    Snd :: GV ((a, b) -> b)

    YY :: GV (d -> a0 -> a1) -> GV (d -> a0) -> GV (d -> a1)
    YN :: GV (d -> a0 -> a1) -> GV a0 -> GV (d -> a1)
    NY :: GV (a0 -> a1) -> GV (d -> a0) -> GV (d -> a1)
    NN :: GV (a0 -> a1) -> GV a0 -> GV a1

    Del0 :: GV ((e, x) -> e)  -- Fst
    Del1 :: GV (((e, y), x) -> (e, x))
    Del2 :: GV ((((e, z), y), x) -> ((e, y), x))
    Del3 :: GV (((((e, v), z), y), x) -> (((e, z), y), x))

    YYr :: GV (d -> d1) -> GV (d -> d2) -> GV (d1 -> a -> b) -> GV (d2 -> a) -> GV (d -> b)

instance Show (GV x) where
 show x = parens' $ case x of
    GInt i -> show i :[]
    GSqrt -> "Sqrt" :[]
    GAdd -> "Add" :[]
    GMod -> "Mod" :[]
    GSub -> "Sub" :[]
    GEq -> "Eq" :[]
    GLess -> "Less" :[]

    GFix -> "Fix" :[]
    GFixS x -> "FixS" : show x :[]
    GFixD x -> "FixD" : show x :[]

    Skip x -> "Skip" : show x :[]

    T2 x -> "T2" : show x :[]
    SkipYN x -> "SkipYN" : show x :[]
    Init x -> "Init" : show x :[]

    Id -> "Id" :[]
    Fst -> "Fst" :[]
    Snd -> "Snd" :[]

    Con2_0_0 -> "Con2_0_0" :[]
    Con2_1_0 -> "Con2_1_0" :[]
    Con2_1_2 -> "Con2_1_2" :[]

    Case2 -> "Case2" :[]

    YY f x -> "YY" : show f : show x :[]
    YN a b -> "YN" : show a : show b :[]
    NY a b -> "NY" : show a : show b :[]
    NN a b -> "NN" : show a : show b :[]

    Del0 -> "Del0" :[]
    Del1 -> "Del1" :[]
    Del2 -> "Del2" :[]
    Del3 -> "Del3" :[]

    YYr a b c d -> "YYr": show a: show b: show c: show d: []
  where
    parens' [x] = x
    parens' x = "(" ++ unwords x ++ ")"

evv :: GV x -> x
evv = \case
    Del0 -> \(y, x) -> y
    Del1 -> \((e, y), x) -> (e, x)
    Del2 -> \(((e, z), y), x) -> ((e, y), x)
    Del3 -> \((((e, v), z), y), x) -> (((e, z), y), x)
    Del1 `NY` Del0 -> \(((e, z), y), x) -> (e, y)
    Del1 `NY` Del1 -> \(((e, z), y), x) -> (e, x)
    Del2 `NY` Del1 -> \((((e, v), z), y), x) -> ((e, z), x)

    GInt i -> i

    GSqrt -> \x -> round $ (sqrt :: Double -> Double) $ fromIntegral x
    GAdd -> (+)
    GMod -> mod
    GSub -> (-)
    GEq -> \a b -> if (a :: Int) == b then \_ x -> x else \x _ -> x
    GLess -> \a b -> if (a :: Int) < b then \_ x -> x else \x _ -> x

    GFix -> \f -> let x = f x in x
    GFixS (evv1 -> f) -> let x = f x in x
    GFixD (evv2 -> f) -> \d -> let x = f d x in x

    Con2_0_0 -> \c0 c1 -> c0
    Con2_1_0 -> \c0 c1 -> c1
    Con2_1_2 -> \x0 x1 c0 c1 -> c1 x0 x1

    Case2 -> \a b c -> c a b

    Id -> \x -> x
    Fst -> \(x, _) -> x
    Snd -> \(_, x) -> x
    NY (evv1 -> a) Fst -> \(x, _) -> a x

    Skip (Init (T2 (evv -> x))) -> \a0 a1 -> x ((), a1)
    Skip Id -> \_ x -> x
    Skip (evv -> x) -> \_ -> x

    SkipYN Id -> \x _ -> x
    SkipYN (evv -> x) -> \d _ -> x d
    Init (T2 (SkipYN Snd)) -> \x y -> x
    Init (T2 (T2 (T2 (evv -> x)))) -> \a0 a1 a2 -> x ((((), a0), a1), a2)
    Init (T2 (T2 (evv -> x))) -> \a0 a1 -> x (((), a0), a1)
    Init (T2 (evv -> x)) -> \a0 -> x ((), a0)
    Init (evv -> x) -> x ()
    T2 (T2 (evv -> x)) -> \a0 a1 a2 -> x ((a0, a1), a2)
    T2 (evv -> x) -> \a0 a1 -> x (a0, a1)

    (evv3 -> a0) `NN` (evv -> a1) `NN` (evv -> a2) `NN` (evv -> a3) -> a0 a1 a2 a3
    (evv3 -> a0) `NN` (evv -> a1) `NN` (evv -> a2) `NY` (evv -> a3) -> \d -> a0 a1 a2 (a3 d)
    (evv3 -> a0) `NN` (evv -> a1) `NY` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 a1 (a2 d) a3
--    (evv3 -> a0) `NN` (evv -> a1) `NY` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 a1 (a2 d) (a3 d)
    (evv3 -> a0) `NY` (evv -> a1) `YN` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 (a1 d) a2 a3
--    (evv3 -> a0) `NY` (evv -> a1) `YN` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 (a1 d) a2 (a3 d)
--    (evv3 -> a0) `NY` (evv -> a1) `YY` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 (a1 d) (a2 d) a3
--    (evv3 -> a0) `NY` (evv -> a1) `YY` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 (a1 d) (a2 d) (a3 d)
    (evv  -> a0) `YN` (evv -> a1) `YN` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 d a1 a2 a3
{-
    (evv  -> a0) `YN` (evv -> a1) `YN` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 d a1 a2 (a3 d)
    (evv  -> a0) `YN` (evv -> a1) `YY` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 d a1 (a2 d) a3
    (evv  -> a0) `YN` (evv -> a1) `YY` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 d a1 (a2 d) (a3 d)
    (evv  -> a0) `YY` (evv -> a1) `YN` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 d (a1 d) a2 a3
    (evv  -> a0) `YY` (evv -> a1) `YN` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 d (a1 d) a2 (a3 d)
    (evv  -> a0) `YY` (evv -> a1) `YY` (evv -> a2) `YN` (evv -> a3) -> \d -> a0 d (a1 d) (a2 d) a3
    (evv  -> a0) `YY` (evv -> a1) `YY` (evv -> a2) `YY` (evv -> a3) -> \d -> a0 d (a1 d) (a2 d) (a3 d)
-}
    (evv2 -> a0) `NN` (evv -> a1) `NN` (evv -> a2) -> a0 a1 a2
    (evv2 -> a0) `NN` (evv -> a1) `NY` (evv -> a2) -> \d -> a0 a1 (a2 d)
    (evv2 -> a0) `NY` (evv -> a1) `YN` (evv -> a2) -> \d -> a0 (a1 d) a2
--    (evv2 -> a0) `NY` (evv -> a1) `YY` (evv -> a2) -> \d -> a0 (a1 d) (a2 d)
    (evv  -> a0) `YN` (evv -> a1) `YN` (evv -> a2) -> \d -> a0 d a1 a2
{-
    (evv  -> a0) `YN` (evv -> a1) `YY` (evv -> a2) -> \d -> a0 d a1 (a2 d)
    (evv  -> a0) `YY` (evv -> a1) `YN` (evv -> a2) -> \d -> a0 d (a1 d) a2
    (evv  -> a0) `YY` (evv -> a1) `YY` (evv -> a2) -> \d -> a0 d (a1 d) (a2 d)
-}
--    YYr (evv -> f1) (evv -> f2) (evv  -> a0) (evv -> a1) `YN` (evv -> a2) -> \d -> let !d1 = f1 d; !d2 = f2 d in a0 d1 (a1 d2) a2

    NN (evv1 -> a0) (evv -> a1) -> a0 a1
    NY (evv1 -> a0) (evv -> a1) -> \d -> a0 (a1 d)
    YN (evv  -> a0) (evv -> a1) -> \d -> a0 d a1
    YY (evv  -> a0) (evv -> a1) -> \d -> a0 d (a1 d)

    YYr Id (evv -> f2) (evv1 -> f) (evv1 -> x) -> \d -> let !d2 = f2 d in f d (x d2)
    YYr (evv -> f1) Id (evv1 -> f) (evv1 -> x) -> \d -> let !d1 = f1 d in f d1 (x d)
    YYr (evv -> f1) (evv -> f2) (evv1 -> f) (evv1 -> x) -> \d -> let !d1 = f1 d; !d2 = f2 d in f d1 (x d2)

{-# INLINE evv1 #-}
evv1 :: GV (a -> b) -> a -> b
evv1 GSqrt x = round $ (sqrt :: Double -> Double) $ fromIntegral x :: Int
--evv1 GFix x = let y = x y in y
evv1 Fst x = fst x
evv1 Snd x = snd x
{-
evv1 (NY (evv1 -> a) Fst) ~(x, _) = a x
evv1 (NY (evv1 -> a) (evv1 -> b)) x = a (b x)
-}
evv1 x a = evv x a

{-# INLINE evv2 #-}
evv2 :: GV (a -> b -> c) -> a -> b -> c
evv2 GAdd a b = a + b
evv2 GMod a b = mod a b
evv2 GSub a b = a - b
evv2 GEq a b = if (a :: Int) == b then \_ x -> x else \x _ -> x
evv2 GLess a b = if (a :: Int) < b then \_ x -> x else \x _ -> x
evv2 Con2_1_2 x0 x1 = \c0 c1 -> c1 x0 x1
evv2 Case2 a b = \c -> c a b
--evv2 (T2 (evv1 -> x)) a0 a1 = x (a0, a1)
evv2 x a b = evv x a b

{-# INLINE evv3 #-}
evv3 :: GV (a -> b -> c -> d) -> a -> b -> c -> d
evv3 Case2 a b c = c a b
evv3 x a b c = evv x a b c

--------------------------------------------------------------------------------

yy :: GV (e -> a -> b) -> GV (e -> a) -> GV (e -> b)
Skip GFix `yy` Skip a1 = Skip (GFixS a1)
Skip GFix `yy` a1 = GFixD a1
Skip a `yy` Skip b = Skip $ a `NN` b
a `yy` Skip b = YN a b
Skip a `yy` b = NY a b
a `yy` b = YY a b

Id `ny` x = x
x `ny` Id = x
x `ny` y = NY x y

init' (T2 Snd) = Id
init' x = Init x

--------------------------------------------------------------------------------

uGV :: GV a -> GV b
uGV = unsafeCoerce

(Just  x, a) `yyR` (Just  y, b) = YYr (uGV x) (uGV y) a b
(Nothing, a) `yyR` (Just  y, b) = YYr Id (uGV y) a b
(Just  x, a) `yyR` (Nothing, b) = YYr (uGV x) Id a b
(Nothing, a) `yyR` (Nothing, b) = a `yy` b

evva_' ss a = (if null dif || null ss' then Nothing else Just $ xx dif, evva_ ss' a)
  where
    dif = map (fromJust . (`elemIndex` ss)) (ss \\ ss')
    ss' = filter (`elem` freeVars a) ss

    del_i :: Int -> GV ()
    del_i i = case i of
        0 -> uGV Del0
        1 -> uGV Del1
        2 -> uGV Del2
        3 -> uGV Del3

    xx :: [Int] -> GV ()
    xx ii = foldr1 (\x y -> uGV $ uGV x `NY` uGV y) $ map del_i $ reverse $ zipWith (-) ii [0,1..]

getLams (EVLam x)
    | null $ count' 0 x = Just (False, ssubst_ comp 0 x)
    | otherwise = Just (True, x)
  where
    comp i j = case compare i j of
        LT -> EVBound (j-1)
        GT -> EVBound j
getLams x = Nothing

evva_ :: [Int] -> EnvValue -> GV (Env -> Value)
evva_ ss = \case

    EVApp _ a b -> (id *** uGV) (evva_' ss a) `yyR` (id *** id) (evva_' ss b)

    z@(getLams -> Just (i, x))
        | b -> Skip $ case i of
            False -> uGV evva'x
            True  -> uGV $ init' $ T2 $ uGV evva'x
        | otherwise -> case i of
            False -> uGV $ SkipYN $ uGV evva'x
            True  -> uGV $ T2 $ uGV evva'x
      where
        b = null ss
        addSkip x = if b then uGV $ Skip x else x
        evva'x = evva_ ss' x

        n = if i then 1 else 0
        ss' = [0..n-1] ++ map (+n) ss

    EVBound i -> uGV Snd

    EVInt i -> Skip $ uGV $ GInt i

    EVPrim x -> Skip $ case x of
        Fix     -> uGV GFix
        Mod     -> uGV GMod
        Add     -> uGV GAdd
        Sub     -> uGV GSub
        IntEq   -> uGV GEq
        IntLess -> uGV GLess
        Sqrt    -> uGV GSqrt
    EVCase x -> Skip $ case length x of
        2       -> uGV Case2
        _ -> error $ "evpr: " ++ show x
    EVCon n i j -> Skip $ case (n, i, j) of
        (2, 0, 0)  -> uGV Con2_0_0
        (2, 1, 0)  -> uGV Con2_1_0
        (2, 1, 2)  -> uGV Con2_1_2
        _ -> error $ "evpr: " ++ show (i, j)

evval :: ((EnvValue, Value), Type) -> (GV a, Value)
evval ((x, _), ty) = (uGV y, tr ty $ evv y)
  where
    y = init' $ uGV $ evva_ [] x
    tr (VCon (TConName Int _ _ _ _ _) _) x = VInt (unsafeCoerce x :: Int)

    init' :: GV (() -> b) -> GV b
    init' (Skip x) = x

-------------------------------------------------------------------------------- interpreter

addToEnv s x = modify $ Map.insert s x *** id

data Stmt
    = Let String ITerm
    | Data String [CTerm] CTerm [(String, CTerm)]
    | Primitive String CTerm

handleStmt :: MonadFix m => Stmt -> AddM m ()
handleStmt (Let n t) = cIEval t >>= addToEnv n

handleStmt (Primitive s t) = do
    vt <- cTEval t VStar
    let n = primNames Map.! s
        ePT = case n of
            -- TODO: make it more efficient?
            Fix -> \case (VInt t: VLam g: _) -> let r = VTag (NQuote $ negate $ 1 + t {-TODO!-}) $ g r in r; vs -> f vs
            Add -> \case (VInt x: VInt y: _) -> VInt $ x + y; vs -> f vs
            Sub -> \case (VInt x: VInt y: _) -> VInt $ x - y; vs -> f vs
            Mod -> \case (VInt x: VInt y: _) -> VInt $ x `mod` y; vs -> f vs
            Sqrt -> \case (VInt x: _) -> VInt $ round $ sqrt $ fromIntegral x; vs -> f vs
            IntEq -> \case (VInt x: VInt y: _) -> vBool $ x == y; vs -> f vs
            IntLess -> \case (VInt x: VInt y: _) -> vBool $ x < y; vs -> f vs
        f = VNeutral . NPrim (PrimName' n s ePT vt)

    addToEnv s ((EVPrim n, lamsT'' vt ePT), vt)

handleStmt (Data s ps t_ cs) = do
   n <- case nameOf s of
            Just n -> return n
            Nothing -> do
                i <- gets snd
                modify $ id *** (+1)
                return $ UName i

   let ps' = ps --ps' <- mapM (\x -> quote0 <$> cTEval 0 te x VStar) ps       -- not needed
   vty <- cTEval (addParams Rel ps' t_) VStar

   mfix $ \ (~(cons_, caseTy_)) -> do

    let
      pnum = length ps
      cnum = length cs
      inum = arityq vty - pnum

      cn = TConName n s pnum vty cons_ caseTy_

      mkCon i (cs, ct_) = do
          ty <- cTEval (addParams Irr ps' ct_) VStar
          return (CConName i cs cn ty, arityq ty - pnum)

      mkCon' ccn@(CConName i cs _ ty) = (cs, ((evCon cnum i (length $ filter (== Rel) $ rels ty), lamsT'' ty $ VCCon i . reverse), ty))

    addToEnv s (({-pure' $ lams'' (rels vty) $ VCon cn-} error "pvcon", lamsT'' vty $ VCon cn), vty)

    cons <- zipWithM mkCon [0..] cs

    let
      t_' = dropPi ps' $ quote0 VStar vty

      addConstr (ccn@(CConName j cstr _ cty), act) = iPi Rel
            $ mkMotive Rel (renum (1 + j) 0 $ dropPi ps' $ quote0 VStar cty)
            $ \tt -> Inf $ foldl (:$:) (Bound $ j + act) $ mkTT tt ++ [Inf $ CCon ccn (downTo (1 + j + act) pnum) (downTo 0 act)]
        where
          mkTT (Inf (ITCon c xs))
                | c == cn && take pnum xs == downTo (1 + j + act) pnum = drop pnum xs
                | otherwise = error $ "illegal data definition (parameters are not uniform) " ++ show (take pnum xs)
                        -- TODO: err

      mkMotive r (Inf (Pi _ x t)) e = iPi r x $ mkMotive r t e
      mkMotive r t e = e t

    caseTy <- flip cTEval VStar     -- null env possible
            $ addParams Irr ps'
            $ iPi TRel (mkMotive Rel t_' $ \(Inf Star){-TODO: err-} -> iPi Rel (Inf $ ITCon cn $ downTo inum pnum ++ downTo 0 inum) $ Inf Star)
            $ flip (foldr addConstr) cons
            $ mkMotive Irr (renum (1 + cnum) 0 t_')
            $ \(Inf Star) -> iPi Rel (Inf $ ITCon cn $ downTo (1 + cnum + inum) pnum ++ downTo 0 inum)
            $ Inf $ foldl (:$:) (Bound $ cnum + inum + 1) $ downTo 1 inum ++ [Inf $ Bound 0]

    let
      elims = case s of (c:cs) -> toLower c: cs ++ "Case"

      lamCase = evCase $ map snd cons
      lamCaseT = VLam $ \b -> lams' cnum $ VLam . evalCaseT b

      fcons = map fst cons

    addToEnv elims ((lamCase, lamCaseT), caseTy)
    mapM_ (uncurry addToEnv . mkCon') fcons

    return (fcons, caseTy)
   return ()

-------------------------------------------------------------------------------- parser

lang = makeTokenParser (haskellStyle { identStart = letter <|> P.char '_',
                                       reservedNames = ["forall", "let", "data", "primitive", "fix"] })

parseType vs = reserved lang "::" *> parseCTerm 0 vs
typedId vs = (,) <$> identifier lang <*> parseType vs

type Pars = CharParser Int

parseStmt_ :: [String] -> Pars Stmt
parseStmt_ e = do
     do Let <$ reserved lang "let" <*> identifier lang <* reserved lang "=" <*> parseITerm 0 e
 <|> do uncurry Primitive <$ reserved lang "primitive" <*> typedId []
 <|> do
      x <- reserved lang "data" *> identifier lang
      let params vs = option [] $ parens lang (typedId vs) >>= \xt -> (xt:) <$> params (fst xt: vs)
      (nps, ts) <- unzip <$> params []
      let parseCons = option [] $ (:) <$> typedId nps <*> option [] (reserved lang ";" *> parseCons)
      Data x ts <$> parseType nps <* reserved lang "=" <*> parseCons

parseITerm :: Int -> [String] -> Pars ITerm
parseITerm 0 e =
   do reserved lang "forall"
      (fe,(r,t):ts) <- rec (e, []) <|> xt Rel (e, [])
      reserved lang "."
      t' <- parseCTerm 0 fe
      return $ foldl (\p (r, t) -> Pi r t (Inf p)) (Pi r t t') ts
 <|> do try $ parseITerm 1 e >>= \t -> option t $ rest (Inf t)
 <|> do parens lang (parseLam e) >>= rest
 where
    rec b = (parens lang (xt Rel b) <|> braces lang (braces lang (xt Irr b) <|> xt TRel b)) >>= \x -> option x $ rec x
    xt r (e, ts) = ((:e) *** (:ts) . (,) r) <$> typedId e
    rest t = Pi Rel t <$ reserved lang "->" <*> parseCTerm 0 ([]:e)
parseITerm 1 e =
     do try $ parseITerm 2 e >>= \t -> option t $ rest (Inf t)
 <|> do parens lang (parseLam e) >>= rest
 where
    rest t = Ann t <$> parseType e
parseITerm 2 e = foldl (:$:) <$> parseITerm 3 e <*> many (optional (P.char '!') >> parseCTerm 3 e)
parseITerm 3 e =
     do Star <$ reserved lang "*"
 <|> do IInt . fromIntegral <$ P.char '#' <*> natural lang
 <|> do toNat <$> natural lang
 <|> do reserved lang "fix"
        i <- P.getState
        P.setState (i+1)
        return $ Global "primFix" :$: Inf (IInt i)
 <|> do identifier lang >>= \x -> return $ maybe (Global x) Bound $ findIndex (== x) e
 <|> parens lang (parseITerm 0 e)
  
parseCTerm :: Int -> [String] -> Pars CTerm
parseCTerm 0 e = parseLam e <|> Inf <$> parseITerm 0 e
parseCTerm p e = try (parens lang $ parseLam e) <|> Inf <$> parseITerm p e
  
parseLam :: [String] -> Pars CTerm
parseLam e = do
    xs <- reservedOp lang "\\" *> many1 (identifier lang) <* reservedOp lang "->"
    t <- parseCTerm 0 (reverse xs ++ e)
    return $ iterate Lam t !! length xs

--------------------------------------------------------------------------------

primes :: [Int]
primes = 2:3: filter (\n -> and $ map (\p -> n `mod` p /= 0) (takeWhile (\x -> x <= round (sqrt $ fromIntegral n)) primes)) [5,7..]

--main = print (primes !! 100000)
main = getArgs >>= \case
  ["fast", n] -> print $ primes !! read n
  [read -> n] -> do
    let f = "primes.lam"
    x <- readFile f
    case P.runParser (whiteSpace lang >> many (parseStmt_ []) >>= \ x -> eof >> return x) 0 f x of
      Left e -> error $ show e
      Right stmts -> do
        v <- runExceptT $ flip evalStateT (tenv, 0) $ do
            mapM_ handleStmt $ stmts ++ [Let "main'" $ Global "main" :$: Inf (IInt n)]
            gets $ fmap evval . Map.lookup "main'" . fst
        case v of
          Right (Just (x, y)) -> do
            putStrLn "typechecked and inlined expression:"
            putStrLn $ {- ppShow -} show x
            putStrLn "reduced value:"
            putStrLn $ show y
          e -> error $ show e