/* * Copyright (c) 2019 Yubico AB. All rights reserved. * Use of this source code is governed by a BSD-style * license that can be found in the LICENSE file. */ #include #include #include #include #include #include #include "mutator_aux.h" #include "wiredata_fido2.h" #include "wiredata_u2f.h" #include "dummy.h" #include "fido.h" #include "fido/es256.h" #include "fido/rs256.h" #include "fido/eddsa.h" #include "../openbsd-compat/openbsd-compat.h" #define TAG_U2F 0x01 #define TAG_TYPE 0x02 #define TAG_CDH 0x03 #define TAG_RP_ID 0x04 #define TAG_EXT 0x05 #define TAG_SEED 0x06 #define TAG_UP 0x07 #define TAG_UV 0x08 #define TAG_WIRE_DATA 0x09 #define TAG_CRED_COUNT 0x0a #define TAG_CRED 0x0b #define TAG_ES256 0x0c #define TAG_RS256 0x0d #define TAG_PIN 0x0e #define TAG_EDDSA 0x0f /* Parameter set defining a FIDO2 get assertion operation. */ struct param { char pin[MAXSTR]; char rp_id[MAXSTR]; int ext; int seed; struct blob cdh; struct blob cred; struct blob es256; struct blob rs256; struct blob eddsa; struct blob wire_data; uint8_t cred_count; uint8_t type; uint8_t u2f; uint8_t up; uint8_t uv; }; /* * Collection of HID reports from an authenticator issued with a FIDO2 * get assertion using the example parameters above. */ static const uint8_t dummy_wire_data_fido[] = { WIREDATA_CTAP_INIT, WIREDATA_CTAP_CBOR_INFO, WIREDATA_CTAP_CBOR_AUTHKEY, WIREDATA_CTAP_CBOR_PINTOKEN, WIREDATA_CTAP_CBOR_ASSERT, }; /* * Collection of HID reports from an authenticator issued with a U2F * authentication using the example parameters above. */ static const uint8_t dummy_wire_data_u2f[] = { WIREDATA_CTAP_INIT, WIREDATA_CTAP_U2F_6985, WIREDATA_CTAP_U2F_6985, WIREDATA_CTAP_U2F_6985, WIREDATA_CTAP_U2F_6985, WIREDATA_CTAP_U2F_AUTH, }; int LLVMFuzzerTestOneInput(const uint8_t *, size_t); size_t LLVMFuzzerCustomMutator(uint8_t *, size_t, size_t, unsigned int); static int unpack(const uint8_t *ptr, size_t len, struct param *p) NO_MSAN { uint8_t **pp = (void *)&ptr; if (unpack_byte(TAG_UV, pp, &len, &p->uv) < 0 || unpack_byte(TAG_UP, pp, &len, &p->up) < 0 || unpack_byte(TAG_U2F, pp, &len, &p->u2f) < 0 || unpack_byte(TAG_TYPE, pp, &len, &p->type) < 0 || unpack_byte(TAG_CRED_COUNT, pp, &len, &p->cred_count) < 0 || unpack_int(TAG_EXT, pp, &len, &p->ext) < 0 || unpack_int(TAG_SEED, pp, &len, &p->seed) < 0 || unpack_string(TAG_RP_ID, pp, &len, p->rp_id) < 0 || unpack_string(TAG_PIN, pp, &len, p->pin) < 0 || unpack_blob(TAG_WIRE_DATA, pp, &len, &p->wire_data) < 0 || unpack_blob(TAG_RS256, pp, &len, &p->rs256) < 0 || unpack_blob(TAG_ES256, pp, &len, &p->es256) < 0 || unpack_blob(TAG_EDDSA, pp, &len, &p->eddsa) < 0 || unpack_blob(TAG_CRED, pp, &len, &p->cred) < 0 || unpack_blob(TAG_CDH, pp, &len, &p->cdh) < 0) return (-1); return (0); } static size_t pack(uint8_t *ptr, size_t len, const struct param *p) { const size_t max = len; if (pack_byte(TAG_UV, &ptr, &len, p->uv) < 0 || pack_byte(TAG_UP, &ptr, &len, p->up) < 0 || pack_byte(TAG_U2F, &ptr, &len, p->u2f) < 0 || pack_byte(TAG_TYPE, &ptr, &len, p->type) < 0 || pack_byte(TAG_CRED_COUNT, &ptr, &len, p->cred_count) < 0 || pack_int(TAG_EXT, &ptr, &len, p->ext) < 0 || pack_int(TAG_SEED, &ptr, &len, p->seed) < 0 || pack_string(TAG_RP_ID, &ptr, &len, p->rp_id) < 0 || pack_string(TAG_PIN, &ptr, &len, p->pin) < 0 || pack_blob(TAG_WIRE_DATA, &ptr, &len, &p->wire_data) < 0 || pack_blob(TAG_RS256, &ptr, &len, &p->rs256) < 0 || pack_blob(TAG_ES256, &ptr, &len, &p->es256) < 0 || pack_blob(TAG_EDDSA, &ptr, &len, &p->eddsa) < 0 || pack_blob(TAG_CRED, &ptr, &len, &p->cred) < 0 || pack_blob(TAG_CDH, &ptr, &len, &p->cdh) < 0) return (0); return (max - len); } static size_t input_len(int max) { return (5 * len_byte() + 2 * len_int() + 2 * len_string(max) + 6 * len_blob(max)); } static void get_assert(fido_assert_t *assert, uint8_t u2f, const struct blob *cdh, const char *rp_id, int ext, uint8_t up, uint8_t uv, const char *pin, uint8_t cred_count, struct blob *cred) { fido_dev_t *dev; fido_dev_io_t io; memset(&io, 0, sizeof(io)); io.open = dev_open; io.close = dev_close; io.read = dev_read; io.write = dev_write; if ((dev = fido_dev_new()) == NULL || fido_dev_set_io_functions(dev, &io) != FIDO_OK || fido_dev_open(dev, "nodev") != FIDO_OK) { fido_dev_free(&dev); return; } if (u2f & 1) fido_dev_force_u2f(dev); for (uint8_t i = 0; i < cred_count; i++) fido_assert_allow_cred(assert, cred->body, cred->len); fido_assert_set_clientdata_hash(assert, cdh->body, cdh->len); fido_assert_set_rp(assert, rp_id); if (ext & 1) fido_assert_set_extensions(assert, FIDO_EXT_HMAC_SECRET); if (up & 1) fido_assert_set_up(assert, FIDO_OPT_TRUE); if (uv & 1) fido_assert_set_uv(assert, FIDO_OPT_TRUE); /* XXX reuse cred as hmac salt to keep struct param small */ fido_assert_set_hmac_salt(assert, cred->body, cred->len); fido_dev_get_assert(dev, assert, u2f & 1 ? NULL : pin); fido_dev_cancel(dev); fido_dev_close(dev); fido_dev_free(&dev); } static void verify_assert(int type, const unsigned char *cdh_ptr, size_t cdh_len, const char *rp_id, const unsigned char *authdata_ptr, size_t authdata_len, const unsigned char *sig_ptr, size_t sig_len, uint8_t up, uint8_t uv, int ext, void *pk) { fido_assert_t *assert = NULL; if ((assert = fido_assert_new()) == NULL) return; fido_assert_set_clientdata_hash(assert, cdh_ptr, cdh_len); fido_assert_set_rp(assert, rp_id); fido_assert_set_count(assert, 1); if (fido_assert_set_authdata(assert, 0, authdata_ptr, authdata_len) != FIDO_OK) { fido_assert_set_authdata_raw(assert, 0, authdata_ptr, authdata_len); } fido_assert_set_extensions(assert, ext); if (up & 1) fido_assert_set_up(assert, FIDO_OPT_TRUE); if (uv & 1) fido_assert_set_uv(assert, FIDO_OPT_TRUE); fido_assert_set_sig(assert, 0, sig_ptr, sig_len); fido_assert_verify(assert, 0, type, pk); fido_assert_free(&assert); } /* * Do a dummy conversion to exercise rs256_pk_from_RSA(). */ static void rs256_convert(const rs256_pk_t *k) { EVP_PKEY *pkey = NULL; rs256_pk_t *pk = NULL; RSA *rsa = NULL; volatile int r; if ((pkey = rs256_pk_to_EVP_PKEY(k)) == NULL || (pk = rs256_pk_new()) == NULL || (rsa = EVP_PKEY_get0_RSA(pkey)) == NULL) goto out; r = rs256_pk_from_RSA(pk, rsa); out: if (pk) rs256_pk_free(&pk); if (pkey) EVP_PKEY_free(pkey); } /* * Do a dummy conversion to exercise eddsa_pk_from_EVP_PKEY(). */ static void eddsa_convert(const eddsa_pk_t *k) { EVP_PKEY *pkey = NULL; eddsa_pk_t *pk = NULL; volatile int r; if ((pkey = eddsa_pk_to_EVP_PKEY(k)) == NULL || (pk = eddsa_pk_new()) == NULL) goto out; r = eddsa_pk_from_EVP_PKEY(pk, pkey); out: if (pk) eddsa_pk_free(&pk); if (pkey) EVP_PKEY_free(pkey); } int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { struct param p; fido_assert_t *assert = NULL; es256_pk_t *es256_pk = NULL; rs256_pk_t *rs256_pk = NULL; eddsa_pk_t *eddsa_pk = NULL; uint8_t flags; uint32_t sigcount; int cose_alg = 0; void *pk; memset(&p, 0, sizeof(p)); if (size < input_len(GETLEN_MIN) || size > input_len(GETLEN_MAX) || unpack(data, size, &p) < 0) return (0); prng_init((unsigned int)p.seed); fido_init(FIDO_DEBUG); fido_set_log_handler(consume_str); switch (p.type & 3) { case 0: cose_alg = COSE_ES256; if ((es256_pk = es256_pk_new()) == NULL) return (0); es256_pk_from_ptr(es256_pk, p.es256.body, p.es256.len); pk = es256_pk; break; case 1: cose_alg = COSE_RS256; if ((rs256_pk = rs256_pk_new()) == NULL) return (0); rs256_pk_from_ptr(rs256_pk, p.rs256.body, p.rs256.len); pk = rs256_pk; rs256_convert(pk); break; default: cose_alg = COSE_EDDSA; if ((eddsa_pk = eddsa_pk_new()) == NULL) return (0); eddsa_pk_from_ptr(eddsa_pk, p.eddsa.body, p.eddsa.len); pk = eddsa_pk; eddsa_convert(pk); break; } if ((assert = fido_assert_new()) == NULL) goto out; set_wire_data(p.wire_data.body, p.wire_data.len); get_assert(assert, p.u2f, &p.cdh, p.rp_id, p.ext, p.up, p.uv, p.pin, p.cred_count, &p.cred); /* XXX +1 on purpose */ for (size_t i = 0; i <= fido_assert_count(assert); i++) { verify_assert(cose_alg, fido_assert_clientdata_hash_ptr(assert), fido_assert_clientdata_hash_len(assert), fido_assert_rp_id(assert), fido_assert_authdata_ptr(assert, i), fido_assert_authdata_len(assert, i), fido_assert_sig_ptr(assert, i), fido_assert_sig_len(assert, i), p.up, p.uv, p.ext, pk); consume(fido_assert_id_ptr(assert, i), fido_assert_id_len(assert, i)); consume(fido_assert_user_id_ptr(assert, i), fido_assert_user_id_len(assert, i)); consume(fido_assert_hmac_secret_ptr(assert, i), fido_assert_hmac_secret_len(assert, i)); consume(fido_assert_user_icon(assert, i), xstrlen(fido_assert_user_icon(assert, i))); consume(fido_assert_user_name(assert, i), xstrlen(fido_assert_user_name(assert, i))); consume(fido_assert_user_display_name(assert, i), xstrlen(fido_assert_user_display_name(assert, i))); flags = fido_assert_flags(assert, i); consume(&flags, sizeof(flags)); sigcount = fido_assert_sigcount(assert, i); consume(&sigcount, sizeof(sigcount)); } out: es256_pk_free(&es256_pk); rs256_pk_free(&rs256_pk); eddsa_pk_free(&eddsa_pk); fido_assert_free(&assert); return (0); } static size_t pack_dummy(uint8_t *ptr, size_t len) { struct param dummy; uint8_t blob[16384]; size_t blob_len; memset(&dummy, 0, sizeof(dummy)); dummy.type = 1; /* rsa */ dummy.ext = FIDO_EXT_HMAC_SECRET; strlcpy(dummy.pin, dummy_pin, sizeof(dummy.pin)); strlcpy(dummy.rp_id, dummy_rp_id, sizeof(dummy.rp_id)); dummy.cred.len = sizeof(dummy_cdh); /* XXX */ dummy.cdh.len = sizeof(dummy_cdh); dummy.es256.len = sizeof(dummy_es256); dummy.rs256.len = sizeof(dummy_rs256); dummy.eddsa.len = sizeof(dummy_eddsa); dummy.wire_data.len = sizeof(dummy_wire_data_fido); memcpy(&dummy.cred.body, &dummy_cdh, dummy.cred.len); /* XXX */ memcpy(&dummy.cdh.body, &dummy_cdh, dummy.cdh.len); memcpy(&dummy.wire_data.body, &dummy_wire_data_fido, dummy.wire_data.len); memcpy(&dummy.es256.body, &dummy_es256, dummy.es256.len); memcpy(&dummy.rs256.body, &dummy_rs256, dummy.rs256.len); memcpy(&dummy.eddsa.body, &dummy_eddsa, dummy.eddsa.len); blob_len = pack(blob, sizeof(blob), &dummy); assert(blob_len != 0); if (blob_len > len) { memcpy(ptr, blob, len); return (len); } memcpy(ptr, blob, blob_len); return (blob_len); } size_t LLVMFuzzerCustomMutator(uint8_t *data, size_t size, size_t maxsize, unsigned int seed) NO_MSAN { struct param p; uint8_t blob[16384]; size_t blob_len; (void)seed; memset(&p, 0, sizeof(p)); if (unpack(data, size, &p) < 0) return (pack_dummy(data, maxsize)); mutate_byte(&p.uv); mutate_byte(&p.up); mutate_byte(&p.u2f); mutate_byte(&p.type); mutate_byte(&p.cred_count); mutate_int(&p.ext); p.seed = (int)seed; if (p.u2f & 1) { p.wire_data.len = sizeof(dummy_wire_data_u2f); memcpy(&p.wire_data.body, &dummy_wire_data_u2f, p.wire_data.len); } else { p.wire_data.len = sizeof(dummy_wire_data_fido); memcpy(&p.wire_data.body, &dummy_wire_data_fido, p.wire_data.len); } mutate_blob(&p.wire_data); mutate_blob(&p.rs256); mutate_blob(&p.es256); mutate_blob(&p.eddsa); mutate_blob(&p.cred); mutate_blob(&p.cdh); mutate_string(p.rp_id); mutate_string(p.pin); blob_len = pack(blob, sizeof(blob), &p); if (blob_len == 0 || blob_len > maxsize) return (0); memcpy(data, blob, blob_len); return (blob_len); }