diff options
-rw-r--r-- | ChangeLog | 13 | ||||
-rw-r--r-- | Makefile.in | 4 | ||||
-rw-r--r-- | kex.h | 8 | ||||
-rw-r--r-- | mac.c | 107 | ||||
-rw-r--r-- | mac.h | 4 | ||||
-rw-r--r-- | monitor_wrap.c | 4 | ||||
-rw-r--r-- | myproposal.h | 4 | ||||
-rw-r--r-- | packet.c | 9 | ||||
-rw-r--r-- | ssh.1 | 6 | ||||
-rw-r--r-- | ssh_config.5 | 6 | ||||
-rw-r--r-- | sshd.8 | 6 | ||||
-rw-r--r-- | sshd_config.5 | 6 | ||||
-rw-r--r-- | umac.c | 1270 | ||||
-rw-r--r-- | umac.h | 123 |
14 files changed, 1512 insertions, 58 deletions
@@ -1,7 +1,16 @@ | |||
1 | 20070611 | 1 | 20070611 |
2 | - (djm) Bugzilla #1306: silence spurious error messages from hang-on-exit | 2 | - (djm) Bugzilla #1306: silence spurious error messages from hang-on-exit |
3 | fix; tested by dtucker@ and jochen.kirn AT gmail.com | 3 | fix; tested by dtucker@ and jochen.kirn AT gmail.com |
4 | 4 | - pvalchev@cvs.openbsd.org 2007/06/07 19:37:34 | |
5 | [kex.h mac.c mac.h monitor_wrap.c myproposal.h packet.c ssh.1] | ||
6 | [ssh_config.5 sshd.8 sshd_config.5] | ||
7 | Add a new MAC algorithm for data integrity, UMAC-64 (not default yet, | ||
8 | must specify umac-64@openssh.com). Provides about 20% end-to-end speedup | ||
9 | compared to hmac-md5. Represents a different approach to message | ||
10 | authentication to that of HMAC that may be beneficial if HMAC based on | ||
11 | one of its underlying hash algorithms is found to be vulnerable to a | ||
12 | new attack. http://www.ietf.org/rfc/rfc4418.txt | ||
13 | in conjunction with and OK djm@ | ||
5 | 20070605 | 14 | 20070605 |
6 | - (dtucker) OpenBSD CVS Sync | 15 | - (dtucker) OpenBSD CVS Sync |
7 | - djm@cvs.openbsd.org 2007/05/22 10:18:52 | 16 | - djm@cvs.openbsd.org 2007/05/22 10:18:52 |
@@ -2976,4 +2985,4 @@ | |||
2976 | OpenServer 6 and add osr5bigcrypt support so when someone migrates | 2985 | OpenServer 6 and add osr5bigcrypt support so when someone migrates |
2977 | passwords between UnixWare and OpenServer they will still work. OK dtucker@ | 2986 | passwords between UnixWare and OpenServer they will still work. OK dtucker@ |
2978 | 2987 | ||
2979 | $Id: ChangeLog,v 1.4680 2007/06/11 03:03:16 djm Exp $ | 2988 | $Id: ChangeLog,v 1.4681 2007/06/11 04:01:42 djm Exp $ |
diff --git a/Makefile.in b/Makefile.in index 6630baa86..2486edc95 100644 --- a/Makefile.in +++ b/Makefile.in | |||
@@ -1,4 +1,4 @@ | |||
1 | # $Id: Makefile.in,v 1.284 2007/03/25 08:26:01 dtucker Exp $ | 1 | # $Id: Makefile.in,v 1.285 2007/06/11 04:01:42 djm Exp $ |
2 | 2 | ||
3 | # uncomment if you run a non bourne compatable shell. Ie. csh | 3 | # uncomment if you run a non bourne compatable shell. Ie. csh |
4 | #SHELL = @SH@ | 4 | #SHELL = @SH@ |
@@ -71,7 +71,7 @@ LIBSSH_OBJS=acss.o authfd.o authfile.o bufaux.o bufbn.o buffer.o \ | |||
71 | atomicio.o key.o dispatch.o kex.o mac.o uidswap.o uuencode.o misc.o \ | 71 | atomicio.o key.o dispatch.o kex.o mac.o uidswap.o uuencode.o misc.o \ |
72 | monitor_fdpass.o rijndael.o ssh-dss.o ssh-rsa.o dh.o kexdh.o \ | 72 | monitor_fdpass.o rijndael.o ssh-dss.o ssh-rsa.o dh.o kexdh.o \ |
73 | kexgex.o kexdhc.o kexgexc.o scard.o msg.o progressmeter.o dns.o \ | 73 | kexgex.o kexdhc.o kexgexc.o scard.o msg.o progressmeter.o dns.o \ |
74 | entropy.o scard-opensc.o gss-genr.o | 74 | entropy.o scard-opensc.o gss-genr.o umac.o |
75 | 75 | ||
76 | SSHOBJS= ssh.o readconf.o clientloop.o sshtty.o \ | 76 | SSHOBJS= ssh.o readconf.o clientloop.o sshtty.o \ |
77 | sshconnect.o sshconnect1.o sshconnect2.o | 77 | sshconnect.o sshconnect1.o sshconnect2.o |
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: kex.h,v 1.45 2007/06/05 06:52:37 djm Exp $ */ | 1 | /* $OpenBSD: kex.h,v 1.46 2007/06/07 19:37:34 pvalchev Exp $ */ |
2 | 2 | ||
3 | /* | 3 | /* |
4 | * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. | 4 | * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. |
@@ -87,11 +87,13 @@ struct Enc { | |||
87 | struct Mac { | 87 | struct Mac { |
88 | char *name; | 88 | char *name; |
89 | int enabled; | 89 | int enabled; |
90 | const EVP_MD *md; | ||
91 | u_int mac_len; | 90 | u_int mac_len; |
92 | u_char *key; | 91 | u_char *key; |
93 | u_int key_len; | 92 | u_int key_len; |
94 | HMAC_CTX ctx; | 93 | int type; |
94 | const EVP_MD *evp_md; | ||
95 | HMAC_CTX evp_ctx; | ||
96 | struct umac_ctx *umac_ctx; | ||
95 | }; | 97 | }; |
96 | struct Comp { | 98 | struct Comp { |
97 | int type; | 99 | int type; |
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: mac.c,v 1.13 2007/06/05 06:52:37 djm Exp $ */ | 1 | /* $OpenBSD: mac.c,v 1.14 2007/06/07 19:37:34 pvalchev Exp $ */ |
2 | /* | 2 | /* |
3 | * Copyright (c) 2001 Markus Friedl. All rights reserved. | 3 | * Copyright (c) 2001 Markus Friedl. All rights reserved. |
4 | * | 4 | * |
@@ -42,35 +42,57 @@ | |||
42 | #include "mac.h" | 42 | #include "mac.h" |
43 | #include "misc.h" | 43 | #include "misc.h" |
44 | 44 | ||
45 | #include "umac.h" | ||
46 | |||
47 | #define SSH_EVP 1 /* OpenSSL EVP-based MAC */ | ||
48 | #define SSH_UMAC 2 /* UMAC (not integrated with OpenSSL) */ | ||
49 | |||
45 | struct { | 50 | struct { |
46 | char *name; | 51 | char *name; |
52 | int type; | ||
47 | const EVP_MD * (*mdfunc)(void); | 53 | const EVP_MD * (*mdfunc)(void); |
48 | int truncatebits; /* truncate digest if != 0 */ | 54 | int truncatebits; /* truncate digest if != 0 */ |
55 | int key_len; /* just for UMAC */ | ||
56 | int len; /* just for UMAC */ | ||
49 | } macs[] = { | 57 | } macs[] = { |
50 | { "hmac-sha1", EVP_sha1, 0, }, | 58 | { "hmac-sha1", SSH_EVP, EVP_sha1, 0, -1, -1 }, |
51 | { "hmac-sha1-96", EVP_sha1, 96 }, | 59 | { "hmac-sha1-96", SSH_EVP, EVP_sha1, 96, -1, -1 }, |
52 | { "hmac-md5", EVP_md5, 0 }, | 60 | { "hmac-md5", SSH_EVP, EVP_md5, 0, -1, -1 }, |
53 | { "hmac-md5-96", EVP_md5, 96 }, | 61 | { "hmac-md5-96", SSH_EVP, EVP_md5, 96, -1, -1 }, |
54 | { "hmac-ripemd160", EVP_ripemd160, 0 }, | 62 | { "hmac-ripemd160", SSH_EVP, EVP_ripemd160, 0, -1, -1 }, |
55 | { "hmac-ripemd160@openssh.com", EVP_ripemd160, 0 }, | 63 | { "hmac-ripemd160@openssh.com", SSH_EVP, EVP_ripemd160, 0, -1, -1 }, |
56 | { NULL, NULL, 0 } | 64 | { "umac-64@openssh.com", SSH_UMAC, NULL, 0, 128, 64 }, |
65 | { NULL, 0, NULL, 0, -1, -1 } | ||
57 | }; | 66 | }; |
58 | 67 | ||
68 | static void | ||
69 | mac_setup_by_id(Mac *mac, int which) | ||
70 | { | ||
71 | int evp_len; | ||
72 | mac->type = macs[which].type; | ||
73 | if (mac->type == SSH_EVP) { | ||
74 | mac->evp_md = (*macs[which].mdfunc)(); | ||
75 | if ((evp_len = EVP_MD_size(mac->evp_md)) <= 0) | ||
76 | fatal("mac %s len %d", mac->name, evp_len); | ||
77 | mac->key_len = mac->mac_len = (u_int)evp_len; | ||
78 | } else { | ||
79 | mac->mac_len = macs[which].len / 8; | ||
80 | mac->key_len = macs[which].key_len / 8; | ||
81 | mac->umac_ctx = NULL; | ||
82 | } | ||
83 | if (macs[which].truncatebits != 0) | ||
84 | mac->mac_len = macs[which].truncatebits / 8; | ||
85 | } | ||
86 | |||
59 | int | 87 | int |
60 | mac_setup(Mac *mac, char *name) | 88 | mac_setup(Mac *mac, char *name) |
61 | { | 89 | { |
62 | int i, evp_len; | 90 | int i; |
63 | 91 | ||
64 | for (i = 0; macs[i].name; i++) { | 92 | for (i = 0; macs[i].name; i++) { |
65 | if (strcmp(name, macs[i].name) == 0) { | 93 | if (strcmp(name, macs[i].name) == 0) { |
66 | if (mac != NULL) { | 94 | if (mac != NULL) |
67 | mac->md = (*macs[i].mdfunc)(); | 95 | mac_setup_by_id(mac, i); |
68 | if ((evp_len = EVP_MD_size(mac->md)) <= 0) | ||
69 | fatal("mac %s len %d", name, evp_len); | ||
70 | mac->key_len = mac->mac_len = (u_int)evp_len; | ||
71 | if (macs[i].truncatebits != 0) | ||
72 | mac->mac_len = macs[i].truncatebits/8; | ||
73 | } | ||
74 | debug2("mac_setup: found %s", name); | 96 | debug2("mac_setup: found %s", name); |
75 | return (0); | 97 | return (0); |
76 | } | 98 | } |
@@ -79,34 +101,65 @@ mac_setup(Mac *mac, char *name) | |||
79 | return (-1); | 101 | return (-1); |
80 | } | 102 | } |
81 | 103 | ||
82 | void | 104 | int |
83 | mac_init(Mac *mac) | 105 | mac_init(Mac *mac) |
84 | { | 106 | { |
85 | if (mac->key == NULL) | 107 | if (mac->key == NULL) |
86 | fatal("mac_init: no key"); | 108 | fatal("mac_init: no key"); |
87 | HMAC_Init(&mac->ctx, mac->key, mac->key_len, mac->md); | 109 | switch (mac->type) { |
110 | case SSH_EVP: | ||
111 | if (mac->evp_md == NULL) | ||
112 | return -1; | ||
113 | HMAC_Init(&mac->evp_ctx, mac->key, mac->key_len, mac->evp_md); | ||
114 | return 0; | ||
115 | case SSH_UMAC: | ||
116 | mac->umac_ctx = umac_new(mac->key); | ||
117 | return 0; | ||
118 | default: | ||
119 | return -1; | ||
120 | } | ||
88 | } | 121 | } |
89 | 122 | ||
90 | u_char * | 123 | u_char * |
91 | mac_compute(Mac *mac, u_int32_t seqno, u_char *data, int datalen) | 124 | mac_compute(Mac *mac, u_int32_t seqno, u_char *data, int datalen) |
92 | { | 125 | { |
93 | static u_char m[EVP_MAX_MD_SIZE]; | 126 | static u_char m[EVP_MAX_MD_SIZE]; |
94 | u_char b[4]; | 127 | u_char b[4], nonce[8]; |
95 | 128 | ||
96 | if (mac->mac_len > sizeof(m)) | 129 | if (mac->mac_len > sizeof(m)) |
97 | fatal("mac_compute: mac too long"); | 130 | fatal("mac_compute: mac too long %u %lu", |
98 | put_u32(b, seqno); | 131 | mac->mac_len, sizeof(m)); |
99 | HMAC_Init(&mac->ctx, NULL, 0, NULL); /* reset HMAC context */ | 132 | |
100 | HMAC_Update(&mac->ctx, b, sizeof(b)); | 133 | switch (mac->type) { |
101 | HMAC_Update(&mac->ctx, data, datalen); | 134 | case SSH_EVP: |
102 | HMAC_Final(&mac->ctx, m, NULL); | 135 | put_u32(b, seqno); |
136 | /* reset HMAC context */ | ||
137 | HMAC_Init(&mac->evp_ctx, NULL, 0, NULL); | ||
138 | HMAC_Update(&mac->evp_ctx, b, sizeof(b)); | ||
139 | HMAC_Update(&mac->evp_ctx, data, datalen); | ||
140 | HMAC_Final(&mac->evp_ctx, m, NULL); | ||
141 | break; | ||
142 | case SSH_UMAC: | ||
143 | put_u64(nonce, seqno); | ||
144 | umac_update(mac->umac_ctx, data, datalen); | ||
145 | umac_final(mac->umac_ctx, m, nonce); | ||
146 | break; | ||
147 | default: | ||
148 | fatal("mac_compute: unknown MAC type"); | ||
149 | } | ||
103 | return (m); | 150 | return (m); |
104 | } | 151 | } |
105 | 152 | ||
106 | void | 153 | void |
107 | mac_clear(Mac *mac) | 154 | mac_clear(Mac *mac) |
108 | { | 155 | { |
109 | HMAC_cleanup(&mac->ctx); | 156 | if (mac->type == SSH_UMAC) { |
157 | if (mac->umac_ctx != NULL) | ||
158 | umac_delete(mac->umac_ctx); | ||
159 | } else if (mac->evp_md != NULL) | ||
160 | HMAC_cleanup(&mac->evp_ctx); | ||
161 | mac->evp_md = NULL; | ||
162 | mac->umac_ctx = NULL; | ||
110 | } | 163 | } |
111 | 164 | ||
112 | /* XXX copied from ciphers_valid */ | 165 | /* XXX copied from ciphers_valid */ |
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: mac.h,v 1.5 2007/06/05 06:52:37 djm Exp $ */ | 1 | /* $OpenBSD: mac.h,v 1.6 2007/06/07 19:37:34 pvalchev Exp $ */ |
2 | /* | 2 | /* |
3 | * Copyright (c) 2001 Markus Friedl. All rights reserved. | 3 | * Copyright (c) 2001 Markus Friedl. All rights reserved. |
4 | * | 4 | * |
@@ -25,6 +25,6 @@ | |||
25 | 25 | ||
26 | int mac_valid(const char *); | 26 | int mac_valid(const char *); |
27 | int mac_setup(Mac *, char *); | 27 | int mac_setup(Mac *, char *); |
28 | void mac_init(Mac *); | 28 | int mac_init(Mac *); |
29 | u_char *mac_compute(Mac *, u_int32_t, u_char *, int); | 29 | u_char *mac_compute(Mac *, u_int32_t, u_char *, int); |
30 | void mac_clear(Mac *); | 30 | void mac_clear(Mac *); |
diff --git a/monitor_wrap.c b/monitor_wrap.c index 61f7c6889..edf2814e5 100644 --- a/monitor_wrap.c +++ b/monitor_wrap.c | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: monitor_wrap.c,v 1.56 2007/06/05 06:52:37 djm Exp $ */ | 1 | /* $OpenBSD: monitor_wrap.c,v 1.57 2007/06/07 19:37:34 pvalchev Exp $ */ |
2 | /* | 2 | /* |
3 | * Copyright 2002 Niels Provos <provos@citi.umich.edu> | 3 | * Copyright 2002 Niels Provos <provos@citi.umich.edu> |
4 | * Copyright 2002 Markus Friedl <markus@openbsd.org> | 4 | * Copyright 2002 Markus Friedl <markus@openbsd.org> |
@@ -477,7 +477,7 @@ mm_newkeys_from_blob(u_char *blob, int blen) | |||
477 | /* Mac structure */ | 477 | /* Mac structure */ |
478 | mac->name = buffer_get_string(&b, NULL); | 478 | mac->name = buffer_get_string(&b, NULL); |
479 | if (mac->name == NULL || mac_setup(mac, mac->name) == -1) | 479 | if (mac->name == NULL || mac_setup(mac, mac->name) == -1) |
480 | fatal("%s: can not init mac %s", __func__, mac->name); | 480 | fatal("%s: can not setup mac %s", __func__, mac->name); |
481 | mac->enabled = buffer_get_int(&b); | 481 | mac->enabled = buffer_get_int(&b); |
482 | mac->key = buffer_get_string(&b, &len); | 482 | mac->key = buffer_get_string(&b, &len); |
483 | if (len > mac->key_len) | 483 | if (len > mac->key_len) |
diff --git a/myproposal.h b/myproposal.h index e246e0dd9..87a9e5820 100644 --- a/myproposal.h +++ b/myproposal.h | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: myproposal.h,v 1.21 2006/03/25 22:22:43 djm Exp $ */ | 1 | /* $OpenBSD: myproposal.h,v 1.22 2007/06/07 19:37:34 pvalchev Exp $ */ |
2 | 2 | ||
3 | /* | 3 | /* |
4 | * Copyright (c) 2000 Markus Friedl. All rights reserved. | 4 | * Copyright (c) 2000 Markus Friedl. All rights reserved. |
@@ -47,7 +47,7 @@ | |||
47 | "aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se," \ | 47 | "aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se," \ |
48 | "aes128-ctr,aes192-ctr,aes256-ctr" | 48 | "aes128-ctr,aes192-ctr,aes256-ctr" |
49 | #define KEX_DEFAULT_MAC \ | 49 | #define KEX_DEFAULT_MAC \ |
50 | "hmac-md5,hmac-sha1,hmac-ripemd160," \ | 50 | "hmac-md5,hmac-sha1,umac-64@openssh.com,hmac-ripemd160," \ |
51 | "hmac-ripemd160@openssh.com," \ | 51 | "hmac-ripemd160@openssh.com," \ |
52 | "hmac-sha1-96,hmac-md5-96" | 52 | "hmac-sha1-96,hmac-md5-96" |
53 | #define KEX_DEFAULT_COMP "none,zlib@openssh.com,zlib" | 53 | #define KEX_DEFAULT_COMP "none,zlib@openssh.com,zlib" |
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: packet.c,v 1.147 2007/06/05 06:52:37 djm Exp $ */ | 1 | /* $OpenBSD: packet.c,v 1.148 2007/06/07 19:37:34 pvalchev Exp $ */ |
2 | /* | 2 | /* |
3 | * Author: Tatu Ylonen <ylo@cs.hut.fi> | 3 | * Author: Tatu Ylonen <ylo@cs.hut.fi> |
4 | * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland | 4 | * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland |
@@ -629,8 +629,7 @@ set_newkeys(int mode) | |||
629 | enc = &newkeys[mode]->enc; | 629 | enc = &newkeys[mode]->enc; |
630 | mac = &newkeys[mode]->mac; | 630 | mac = &newkeys[mode]->mac; |
631 | comp = &newkeys[mode]->comp; | 631 | comp = &newkeys[mode]->comp; |
632 | if (mac->md != NULL) | 632 | mac_clear(mac); |
633 | mac_clear(mac); | ||
634 | xfree(enc->name); | 633 | xfree(enc->name); |
635 | xfree(enc->iv); | 634 | xfree(enc->iv); |
636 | xfree(enc->key); | 635 | xfree(enc->key); |
@@ -645,10 +644,8 @@ set_newkeys(int mode) | |||
645 | enc = &newkeys[mode]->enc; | 644 | enc = &newkeys[mode]->enc; |
646 | mac = &newkeys[mode]->mac; | 645 | mac = &newkeys[mode]->mac; |
647 | comp = &newkeys[mode]->comp; | 646 | comp = &newkeys[mode]->comp; |
648 | if (mac->md != NULL) { | 647 | if (mac_init(mac) == 0) |
649 | mac_init(mac); | ||
650 | mac->enabled = 1; | 648 | mac->enabled = 1; |
651 | } | ||
652 | DBG(debug("cipher_init_context: %d", mode)); | 649 | DBG(debug("cipher_init_context: %d", mode)); |
653 | cipher_init(cc, enc->cipher, enc->key, enc->key_len, | 650 | cipher_init(cc, enc->cipher, enc->key, enc->key_len, |
654 | enc->iv, enc->block_size, crypt_type); | 651 | enc->iv, enc->block_size, crypt_type); |
@@ -34,8 +34,8 @@ | |||
34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
36 | .\" | 36 | .\" |
37 | .\" $OpenBSD: ssh.1,v 1.267 2007/05/31 19:20:16 jmc Exp $ | 37 | .\" $OpenBSD: ssh.1,v 1.268 2007/06/07 19:37:34 pvalchev Exp $ |
38 | .Dd $Mdocdate: May 31 2007 $ | 38 | .Dd $Mdocdate: June 7 2007 $ |
39 | .Dt SSH 1 | 39 | .Dt SSH 1 |
40 | .Os | 40 | .Os |
41 | .Sh NAME | 41 | .Sh NAME |
@@ -674,7 +674,7 @@ Both protocols support similar authentication methods, | |||
674 | but protocol 2 is preferred since | 674 | but protocol 2 is preferred since |
675 | it provides additional mechanisms for confidentiality | 675 | it provides additional mechanisms for confidentiality |
676 | (the traffic is encrypted using AES, 3DES, Blowfish, CAST128, or Arcfour) | 676 | (the traffic is encrypted using AES, 3DES, Blowfish, CAST128, or Arcfour) |
677 | and integrity (hmac-md5, hmac-sha1, hmac-ripemd160). | 677 | and integrity (hmac-md5, hmac-sha1, umac-64, hmac-ripemd160). |
678 | Protocol 1 lacks a strong mechanism for ensuring the | 678 | Protocol 1 lacks a strong mechanism for ensuring the |
679 | integrity of the connection. | 679 | integrity of the connection. |
680 | .Pp | 680 | .Pp |
diff --git a/ssh_config.5 b/ssh_config.5 index 43465eff4..4537fb7f8 100644 --- a/ssh_config.5 +++ b/ssh_config.5 | |||
@@ -34,8 +34,8 @@ | |||
34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
36 | .\" | 36 | .\" |
37 | .\" $OpenBSD: ssh_config.5,v 1.99 2007/05/31 19:20:16 jmc Exp $ | 37 | .\" $OpenBSD: ssh_config.5,v 1.100 2007/06/07 19:37:34 pvalchev Exp $ |
38 | .Dd $Mdocdate: May 31 2007 $ | 38 | .Dd $Mdocdate: June 7 2007 $ |
39 | .Dt SSH_CONFIG 5 | 39 | .Dt SSH_CONFIG 5 |
40 | .Os | 40 | .Os |
41 | .Sh NAME | 41 | .Sh NAME |
@@ -641,7 +641,7 @@ The MAC algorithm is used in protocol version 2 | |||
641 | for data integrity protection. | 641 | for data integrity protection. |
642 | Multiple algorithms must be comma-separated. | 642 | Multiple algorithms must be comma-separated. |
643 | The default is: | 643 | The default is: |
644 | .Dq hmac-md5,hmac-sha1,hmac-ripemd160,hmac-sha1-96,hmac-md5-96 . | 644 | .Dq hmac-md5,hmac-sha1,umac-64@openssh.com,hmac-ripemd160,hmac-sha1-96,hmac-md5-96 . |
645 | .It Cm NoHostAuthenticationForLocalhost | 645 | .It Cm NoHostAuthenticationForLocalhost |
646 | This option can be used if the home directory is shared across machines. | 646 | This option can be used if the home directory is shared across machines. |
647 | In this case localhost will refer to a different machine on each of | 647 | In this case localhost will refer to a different machine on each of |
@@ -34,8 +34,8 @@ | |||
34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
36 | .\" | 36 | .\" |
37 | .\" $OpenBSD: sshd.8,v 1.236 2007/05/31 19:20:16 jmc Exp $ | 37 | .\" $OpenBSD: sshd.8,v 1.237 2007/06/07 19:37:34 pvalchev Exp $ |
38 | .Dd $Mdocdate: May 31 2007 $ | 38 | .Dd $Mdocdate: June 7 2007 $ |
39 | .Dt SSHD 8 | 39 | .Dt SSHD 8 |
40 | .Os | 40 | .Os |
41 | .Sh NAME | 41 | .Sh NAME |
@@ -276,7 +276,7 @@ The client selects the encryption algorithm | |||
276 | to use from those offered by the server. | 276 | to use from those offered by the server. |
277 | Additionally, session integrity is provided | 277 | Additionally, session integrity is provided |
278 | through a cryptographic message authentication code | 278 | through a cryptographic message authentication code |
279 | (hmac-sha1 or hmac-md5). | 279 | (hmac-md5, hmac-sha1, umac-64 or hmac-ripemd160). |
280 | .Pp | 280 | .Pp |
281 | Finally, the server and the client enter an authentication dialog. | 281 | Finally, the server and the client enter an authentication dialog. |
282 | The client tries to authenticate itself using | 282 | The client tries to authenticate itself using |
diff --git a/sshd_config.5 b/sshd_config.5 index 8b72ecc81..528f52147 100644 --- a/sshd_config.5 +++ b/sshd_config.5 | |||
@@ -34,8 +34,8 @@ | |||
34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 34 | .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 35 | .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
36 | .\" | 36 | .\" |
37 | .\" $OpenBSD: sshd_config.5,v 1.75 2007/05/31 19:20:17 jmc Exp $ | 37 | .\" $OpenBSD: sshd_config.5,v 1.76 2007/06/07 19:37:34 pvalchev Exp $ |
38 | .Dd $Mdocdate: May 31 2007 $ | 38 | .Dd $Mdocdate: June 7 2007 $ |
39 | .Dt SSHD_CONFIG 5 | 39 | .Dt SSHD_CONFIG 5 |
40 | .Os | 40 | .Os |
41 | .Sh NAME | 41 | .Sh NAME |
@@ -489,7 +489,7 @@ The MAC algorithm is used in protocol version 2 | |||
489 | for data integrity protection. | 489 | for data integrity protection. |
490 | Multiple algorithms must be comma-separated. | 490 | Multiple algorithms must be comma-separated. |
491 | The default is: | 491 | The default is: |
492 | .Dq hmac-md5,hmac-sha1,hmac-ripemd160,hmac-sha1-96,hmac-md5-96 . | 492 | .Dq hmac-md5,hmac-sha1,umac-64@openssh.com,hmac-ripemd160,hmac-sha1-96,hmac-md5-96 . |
493 | .It Cm Match | 493 | .It Cm Match |
494 | Introduces a conditional block. | 494 | Introduces a conditional block. |
495 | If all of the criteria on the | 495 | If all of the criteria on the |
@@ -0,0 +1,1270 @@ | |||
1 | /* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */ | ||
2 | /* ----------------------------------------------------------------------- | ||
3 | * | ||
4 | * umac.c -- C Implementation UMAC Message Authentication | ||
5 | * | ||
6 | * Version 0.93b of rfc4418.txt -- 2006 July 18 | ||
7 | * | ||
8 | * For a full description of UMAC message authentication see the UMAC | ||
9 | * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac | ||
10 | * Please report bugs and suggestions to the UMAC webpage. | ||
11 | * | ||
12 | * Copyright (c) 1999-2006 Ted Krovetz | ||
13 | * | ||
14 | * Permission to use, copy, modify, and distribute this software and | ||
15 | * its documentation for any purpose and with or without fee, is hereby | ||
16 | * granted provided that the above copyright notice appears in all copies | ||
17 | * and in supporting documentation, and that the name of the copyright | ||
18 | * holder not be used in advertising or publicity pertaining to | ||
19 | * distribution of the software without specific, written prior permission. | ||
20 | * | ||
21 | * Comments should be directed to Ted Krovetz (tdk@acm.org) | ||
22 | * | ||
23 | * ---------------------------------------------------------------------- */ | ||
24 | |||
25 | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// | ||
26 | * | ||
27 | * 1) This version does not work properly on messages larger than 16MB | ||
28 | * | ||
29 | * 2) If you set the switch to use SSE2, then all data must be 16-byte | ||
30 | * aligned | ||
31 | * | ||
32 | * 3) When calling the function umac(), it is assumed that msg is in | ||
33 | * a writable buffer of length divisible by 32 bytes. The message itself | ||
34 | * does not have to fill the entire buffer, but bytes beyond msg may be | ||
35 | * zeroed. | ||
36 | * | ||
37 | * 4) Three free AES implementations are supported by this implementation of | ||
38 | * UMAC. Paulo Barreto's version is in the public domain and can be found | ||
39 | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for | ||
40 | * "Barreto"). The only two files needed are rijndael-alg-fst.c and | ||
41 | * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU | ||
42 | * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It | ||
43 | * includes a fast IA-32 assembly version. The OpenSSL crypo library is | ||
44 | * the third. | ||
45 | * | ||
46 | * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes | ||
47 | * produced under gcc with optimizations set -O3 or higher. Dunno why. | ||
48 | * | ||
49 | /////////////////////////////////////////////////////////////////////// */ | ||
50 | |||
51 | /* ---------------------------------------------------------------------- */ | ||
52 | /* --- User Switches ---------------------------------------------------- */ | ||
53 | /* ---------------------------------------------------------------------- */ | ||
54 | |||
55 | #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ | ||
56 | /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ | ||
57 | /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ | ||
58 | /* #define SSE2 0 Is SSE2 is available? */ | ||
59 | /* #define RUN_TESTS 0 Run basic correctness/speed tests */ | ||
60 | /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ | ||
61 | |||
62 | /* ---------------------------------------------------------------------- */ | ||
63 | /* -- Global Includes --------------------------------------------------- */ | ||
64 | /* ---------------------------------------------------------------------- */ | ||
65 | |||
66 | #include "includes.h" | ||
67 | #include <sys/types.h> | ||
68 | |||
69 | #include "umac.h" | ||
70 | #include <string.h> | ||
71 | #include <stdlib.h> | ||
72 | #include <stddef.h> | ||
73 | |||
74 | /* ---------------------------------------------------------------------- */ | ||
75 | /* --- Primitive Data Types --- */ | ||
76 | /* ---------------------------------------------------------------------- */ | ||
77 | |||
78 | /* The following assumptions may need change on your system */ | ||
79 | typedef u_int8_t UINT8; /* 1 byte */ | ||
80 | typedef u_int16_t UINT16; /* 2 byte */ | ||
81 | typedef u_int32_t UINT32; /* 4 byte */ | ||
82 | typedef u_int64_t UINT64; /* 8 bytes */ | ||
83 | typedef unsigned int UWORD; /* Register */ | ||
84 | |||
85 | /* ---------------------------------------------------------------------- */ | ||
86 | /* --- Constants -------------------------------------------------------- */ | ||
87 | /* ---------------------------------------------------------------------- */ | ||
88 | |||
89 | #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ | ||
90 | |||
91 | /* Message "words" are read from memory in an endian-specific manner. */ | ||
92 | /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ | ||
93 | /* be set true if the host computer is little-endian. */ | ||
94 | |||
95 | #if BYTE_ORDER == LITTLE_ENDIAN | ||
96 | #define __LITTLE_ENDIAN__ 1 | ||
97 | #else | ||
98 | #define __LITTLE_ENDIAN__ 0 | ||
99 | #endif | ||
100 | |||
101 | /* ---------------------------------------------------------------------- */ | ||
102 | /* ---------------------------------------------------------------------- */ | ||
103 | /* ----- Architecture Specific ------------------------------------------ */ | ||
104 | /* ---------------------------------------------------------------------- */ | ||
105 | /* ---------------------------------------------------------------------- */ | ||
106 | |||
107 | |||
108 | /* ---------------------------------------------------------------------- */ | ||
109 | /* ---------------------------------------------------------------------- */ | ||
110 | /* ----- Primitive Routines --------------------------------------------- */ | ||
111 | /* ---------------------------------------------------------------------- */ | ||
112 | /* ---------------------------------------------------------------------- */ | ||
113 | |||
114 | |||
115 | /* ---------------------------------------------------------------------- */ | ||
116 | /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ | ||
117 | /* ---------------------------------------------------------------------- */ | ||
118 | |||
119 | #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) | ||
120 | |||
121 | /* ---------------------------------------------------------------------- */ | ||
122 | /* --- Endian Conversion --- Forcing assembly on some platforms */ | ||
123 | /* ---------------------------------------------------------------------- */ | ||
124 | |||
125 | #if 0 | ||
126 | static UINT32 LOAD_UINT32_REVERSED(void *ptr) | ||
127 | { | ||
128 | UINT32 temp = *(UINT32 *)ptr; | ||
129 | temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 ) | ||
130 | | ((temp & 0x0000FF00) << 8 ) | (temp << 24); | ||
131 | return (UINT32)temp; | ||
132 | } | ||
133 | |||
134 | static void STORE_UINT32_REVERSED(void *ptr, UINT32 x) | ||
135 | { | ||
136 | UINT32 i = (UINT32)x; | ||
137 | *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 ) | ||
138 | | ((i & 0x0000FF00) << 8 ) | (i << 24); | ||
139 | } | ||
140 | #endif | ||
141 | |||
142 | /* The following definitions use the above reversal-primitives to do the right | ||
143 | * thing on endian specific load and stores. | ||
144 | */ | ||
145 | |||
146 | #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p))) | ||
147 | #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v)) | ||
148 | |||
149 | #if (__LITTLE_ENDIAN__) | ||
150 | #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr)) | ||
151 | #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x) | ||
152 | #else | ||
153 | #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr) | ||
154 | #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x)) | ||
155 | #endif | ||
156 | |||
157 | |||
158 | |||
159 | /* ---------------------------------------------------------------------- */ | ||
160 | /* ---------------------------------------------------------------------- */ | ||
161 | /* ----- Begin KDF & PDF Section ---------------------------------------- */ | ||
162 | /* ---------------------------------------------------------------------- */ | ||
163 | /* ---------------------------------------------------------------------- */ | ||
164 | |||
165 | /* UMAC uses AES with 16 byte block and key lengths */ | ||
166 | #define AES_BLOCK_LEN 16 | ||
167 | |||
168 | /* OpenSSL's AES */ | ||
169 | #include <openssl/aes.h> | ||
170 | typedef AES_KEY aes_int_key[1]; | ||
171 | #define aes_encryption(in,out,int_key) \ | ||
172 | AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) | ||
173 | #define aes_key_setup(key,int_key) \ | ||
174 | AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key) | ||
175 | |||
176 | /* The user-supplied UMAC key is stretched using AES in a counter | ||
177 | * mode to supply all random bits needed by UMAC. The kdf function takes | ||
178 | * an AES internal key representation 'key' and writes a stream of | ||
179 | * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct | ||
180 | * 'ndx' causes a distinct byte stream. | ||
181 | */ | ||
182 | static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) | ||
183 | { | ||
184 | UINT8 in_buf[AES_BLOCK_LEN] = {0}; | ||
185 | UINT8 out_buf[AES_BLOCK_LEN]; | ||
186 | UINT8 *dst_buf = (UINT8 *)buffer_ptr; | ||
187 | int i; | ||
188 | |||
189 | /* Setup the initial value */ | ||
190 | in_buf[AES_BLOCK_LEN-9] = ndx; | ||
191 | in_buf[AES_BLOCK_LEN-1] = i = 1; | ||
192 | |||
193 | while (nbytes >= AES_BLOCK_LEN) { | ||
194 | aes_encryption(in_buf, out_buf, key); | ||
195 | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); | ||
196 | in_buf[AES_BLOCK_LEN-1] = ++i; | ||
197 | nbytes -= AES_BLOCK_LEN; | ||
198 | dst_buf += AES_BLOCK_LEN; | ||
199 | } | ||
200 | if (nbytes) { | ||
201 | aes_encryption(in_buf, out_buf, key); | ||
202 | memcpy(dst_buf,out_buf,nbytes); | ||
203 | } | ||
204 | } | ||
205 | |||
206 | /* The final UHASH result is XOR'd with the output of a pseudorandom | ||
207 | * function. Here, we use AES to generate random output and | ||
208 | * xor the appropriate bytes depending on the last bits of nonce. | ||
209 | * This scheme is optimized for sequential, increasing big-endian nonces. | ||
210 | */ | ||
211 | |||
212 | typedef struct { | ||
213 | UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ | ||
214 | UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ | ||
215 | aes_int_key prf_key; /* Expanded AES key for PDF */ | ||
216 | } pdf_ctx; | ||
217 | |||
218 | static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) | ||
219 | { | ||
220 | UINT8 buf[UMAC_KEY_LEN]; | ||
221 | |||
222 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); | ||
223 | aes_key_setup(buf, pc->prf_key); | ||
224 | |||
225 | /* Initialize pdf and cache */ | ||
226 | memset(pc->nonce, 0, sizeof(pc->nonce)); | ||
227 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | ||
228 | } | ||
229 | |||
230 | static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8]) | ||
231 | { | ||
232 | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes | ||
233 | * of the AES output. If last time around we returned the ndx-1st | ||
234 | * element, then we may have the result in the cache already. | ||
235 | */ | ||
236 | |||
237 | #if (UMAC_OUTPUT_LEN == 4) | ||
238 | #define LOW_BIT_MASK 3 | ||
239 | #elif (UMAC_OUTPUT_LEN == 8) | ||
240 | #define LOW_BIT_MASK 1 | ||
241 | #elif (UMAC_OUTPUT_LEN > 8) | ||
242 | #define LOW_BIT_MASK 0 | ||
243 | #endif | ||
244 | |||
245 | UINT8 tmp_nonce_lo[4]; | ||
246 | #if LOW_BIT_MASK != 0 | ||
247 | int ndx = nonce[7] & LOW_BIT_MASK; | ||
248 | #endif | ||
249 | *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1]; | ||
250 | tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ | ||
251 | |||
252 | if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || | ||
253 | (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) | ||
254 | { | ||
255 | ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0]; | ||
256 | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0]; | ||
257 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | ||
258 | } | ||
259 | |||
260 | #if (UMAC_OUTPUT_LEN == 4) | ||
261 | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; | ||
262 | #elif (UMAC_OUTPUT_LEN == 8) | ||
263 | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; | ||
264 | #elif (UMAC_OUTPUT_LEN == 12) | ||
265 | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | ||
266 | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; | ||
267 | #elif (UMAC_OUTPUT_LEN == 16) | ||
268 | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | ||
269 | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; | ||
270 | #endif | ||
271 | } | ||
272 | |||
273 | /* ---------------------------------------------------------------------- */ | ||
274 | /* ---------------------------------------------------------------------- */ | ||
275 | /* ----- Begin NH Hash Section ------------------------------------------ */ | ||
276 | /* ---------------------------------------------------------------------- */ | ||
277 | /* ---------------------------------------------------------------------- */ | ||
278 | |||
279 | /* The NH-based hash functions used in UMAC are described in the UMAC paper | ||
280 | * and specification, both of which can be found at the UMAC website. | ||
281 | * The interface to this implementation has two | ||
282 | * versions, one expects the entire message being hashed to be passed | ||
283 | * in a single buffer and returns the hash result immediately. The second | ||
284 | * allows the message to be passed in a sequence of buffers. In the | ||
285 | * muliple-buffer interface, the client calls the routine nh_update() as | ||
286 | * many times as necessary. When there is no more data to be fed to the | ||
287 | * hash, the client calls nh_final() which calculates the hash output. | ||
288 | * Before beginning another hash calculation the nh_reset() routine | ||
289 | * must be called. The single-buffer routine, nh(), is equivalent to | ||
290 | * the sequence of calls nh_update() and nh_final(); however it is | ||
291 | * optimized and should be prefered whenever the multiple-buffer interface | ||
292 | * is not necessary. When using either interface, it is the client's | ||
293 | * responsability to pass no more than L1_KEY_LEN bytes per hash result. | ||
294 | * | ||
295 | * The routine nh_init() initializes the nh_ctx data structure and | ||
296 | * must be called once, before any other PDF routine. | ||
297 | */ | ||
298 | |||
299 | /* The "nh_aux" routines do the actual NH hashing work. They | ||
300 | * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines | ||
301 | * produce output for all STREAMS NH iterations in one call, | ||
302 | * allowing the parallel implementation of the streams. | ||
303 | */ | ||
304 | |||
305 | #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ | ||
306 | #define L1_KEY_LEN 1024 /* Internal key bytes */ | ||
307 | #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ | ||
308 | #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ | ||
309 | #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ | ||
310 | #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ | ||
311 | |||
312 | typedef struct { | ||
313 | UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ | ||
314 | UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */ | ||
315 | int next_data_empty; /* Bookeeping variable for data buffer. */ | ||
316 | int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ | ||
317 | UINT64 state[STREAMS]; /* on-line state */ | ||
318 | } nh_ctx; | ||
319 | |||
320 | |||
321 | #if (UMAC_OUTPUT_LEN == 4) | ||
322 | |||
323 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) | ||
324 | /* NH hashing primitive. Previous (partial) hash result is loaded and | ||
325 | * then stored via hp pointer. The length of the data pointed at by "dp", | ||
326 | * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key | ||
327 | * is expected to be endian compensated in memory at key setup. | ||
328 | */ | ||
329 | { | ||
330 | UINT64 h; | ||
331 | UWORD c = dlen / 32; | ||
332 | UINT32 *k = (UINT32 *)kp; | ||
333 | UINT32 *d = (UINT32 *)dp; | ||
334 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; | ||
335 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7; | ||
336 | |||
337 | h = *((UINT64 *)hp); | ||
338 | do { | ||
339 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); | ||
340 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); | ||
341 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); | ||
342 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); | ||
343 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); | ||
344 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); | ||
345 | h += MUL64((k0 + d0), (k4 + d4)); | ||
346 | h += MUL64((k1 + d1), (k5 + d5)); | ||
347 | h += MUL64((k2 + d2), (k6 + d6)); | ||
348 | h += MUL64((k3 + d3), (k7 + d7)); | ||
349 | |||
350 | d += 8; | ||
351 | k += 8; | ||
352 | } while (--c); | ||
353 | *((UINT64 *)hp) = h; | ||
354 | } | ||
355 | |||
356 | #elif (UMAC_OUTPUT_LEN == 8) | ||
357 | |||
358 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) | ||
359 | /* Same as previous nh_aux, but two streams are handled in one pass, | ||
360 | * reading and writing 16 bytes of hash-state per call. | ||
361 | */ | ||
362 | { | ||
363 | UINT64 h1,h2; | ||
364 | UWORD c = dlen / 32; | ||
365 | UINT32 *k = (UINT32 *)kp; | ||
366 | UINT32 *d = (UINT32 *)dp; | ||
367 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; | ||
368 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, | ||
369 | k8,k9,k10,k11; | ||
370 | |||
371 | h1 = *((UINT64 *)hp); | ||
372 | h2 = *((UINT64 *)hp + 1); | ||
373 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); | ||
374 | do { | ||
375 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); | ||
376 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); | ||
377 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); | ||
378 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); | ||
379 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); | ||
380 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); | ||
381 | |||
382 | h1 += MUL64((k0 + d0), (k4 + d4)); | ||
383 | h2 += MUL64((k4 + d0), (k8 + d4)); | ||
384 | |||
385 | h1 += MUL64((k1 + d1), (k5 + d5)); | ||
386 | h2 += MUL64((k5 + d1), (k9 + d5)); | ||
387 | |||
388 | h1 += MUL64((k2 + d2), (k6 + d6)); | ||
389 | h2 += MUL64((k6 + d2), (k10 + d6)); | ||
390 | |||
391 | h1 += MUL64((k3 + d3), (k7 + d7)); | ||
392 | h2 += MUL64((k7 + d3), (k11 + d7)); | ||
393 | |||
394 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; | ||
395 | |||
396 | d += 8; | ||
397 | k += 8; | ||
398 | } while (--c); | ||
399 | ((UINT64 *)hp)[0] = h1; | ||
400 | ((UINT64 *)hp)[1] = h2; | ||
401 | } | ||
402 | |||
403 | #elif (UMAC_OUTPUT_LEN == 12) | ||
404 | |||
405 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) | ||
406 | /* Same as previous nh_aux, but two streams are handled in one pass, | ||
407 | * reading and writing 24 bytes of hash-state per call. | ||
408 | */ | ||
409 | { | ||
410 | UINT64 h1,h2,h3; | ||
411 | UWORD c = dlen / 32; | ||
412 | UINT32 *k = (UINT32 *)kp; | ||
413 | UINT32 *d = (UINT32 *)dp; | ||
414 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; | ||
415 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, | ||
416 | k8,k9,k10,k11,k12,k13,k14,k15; | ||
417 | |||
418 | h1 = *((UINT64 *)hp); | ||
419 | h2 = *((UINT64 *)hp + 1); | ||
420 | h3 = *((UINT64 *)hp + 2); | ||
421 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); | ||
422 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); | ||
423 | do { | ||
424 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); | ||
425 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); | ||
426 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); | ||
427 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); | ||
428 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); | ||
429 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); | ||
430 | |||
431 | h1 += MUL64((k0 + d0), (k4 + d4)); | ||
432 | h2 += MUL64((k4 + d0), (k8 + d4)); | ||
433 | h3 += MUL64((k8 + d0), (k12 + d4)); | ||
434 | |||
435 | h1 += MUL64((k1 + d1), (k5 + d5)); | ||
436 | h2 += MUL64((k5 + d1), (k9 + d5)); | ||
437 | h3 += MUL64((k9 + d1), (k13 + d5)); | ||
438 | |||
439 | h1 += MUL64((k2 + d2), (k6 + d6)); | ||
440 | h2 += MUL64((k6 + d2), (k10 + d6)); | ||
441 | h3 += MUL64((k10 + d2), (k14 + d6)); | ||
442 | |||
443 | h1 += MUL64((k3 + d3), (k7 + d7)); | ||
444 | h2 += MUL64((k7 + d3), (k11 + d7)); | ||
445 | h3 += MUL64((k11 + d3), (k15 + d7)); | ||
446 | |||
447 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; | ||
448 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; | ||
449 | |||
450 | d += 8; | ||
451 | k += 8; | ||
452 | } while (--c); | ||
453 | ((UINT64 *)hp)[0] = h1; | ||
454 | ((UINT64 *)hp)[1] = h2; | ||
455 | ((UINT64 *)hp)[2] = h3; | ||
456 | } | ||
457 | |||
458 | #elif (UMAC_OUTPUT_LEN == 16) | ||
459 | |||
460 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) | ||
461 | /* Same as previous nh_aux, but two streams are handled in one pass, | ||
462 | * reading and writing 24 bytes of hash-state per call. | ||
463 | */ | ||
464 | { | ||
465 | UINT64 h1,h2,h3,h4; | ||
466 | UWORD c = dlen / 32; | ||
467 | UINT32 *k = (UINT32 *)kp; | ||
468 | UINT32 *d = (UINT32 *)dp; | ||
469 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; | ||
470 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, | ||
471 | k8,k9,k10,k11,k12,k13,k14,k15, | ||
472 | k16,k17,k18,k19; | ||
473 | |||
474 | h1 = *((UINT64 *)hp); | ||
475 | h2 = *((UINT64 *)hp + 1); | ||
476 | h3 = *((UINT64 *)hp + 2); | ||
477 | h4 = *((UINT64 *)hp + 3); | ||
478 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); | ||
479 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); | ||
480 | do { | ||
481 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); | ||
482 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); | ||
483 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); | ||
484 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); | ||
485 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); | ||
486 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); | ||
487 | k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); | ||
488 | |||
489 | h1 += MUL64((k0 + d0), (k4 + d4)); | ||
490 | h2 += MUL64((k4 + d0), (k8 + d4)); | ||
491 | h3 += MUL64((k8 + d0), (k12 + d4)); | ||
492 | h4 += MUL64((k12 + d0), (k16 + d4)); | ||
493 | |||
494 | h1 += MUL64((k1 + d1), (k5 + d5)); | ||
495 | h2 += MUL64((k5 + d1), (k9 + d5)); | ||
496 | h3 += MUL64((k9 + d1), (k13 + d5)); | ||
497 | h4 += MUL64((k13 + d1), (k17 + d5)); | ||
498 | |||
499 | h1 += MUL64((k2 + d2), (k6 + d6)); | ||
500 | h2 += MUL64((k6 + d2), (k10 + d6)); | ||
501 | h3 += MUL64((k10 + d2), (k14 + d6)); | ||
502 | h4 += MUL64((k14 + d2), (k18 + d6)); | ||
503 | |||
504 | h1 += MUL64((k3 + d3), (k7 + d7)); | ||
505 | h2 += MUL64((k7 + d3), (k11 + d7)); | ||
506 | h3 += MUL64((k11 + d3), (k15 + d7)); | ||
507 | h4 += MUL64((k15 + d3), (k19 + d7)); | ||
508 | |||
509 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; | ||
510 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; | ||
511 | k8 = k16; k9 = k17; k10 = k18; k11 = k19; | ||
512 | |||
513 | d += 8; | ||
514 | k += 8; | ||
515 | } while (--c); | ||
516 | ((UINT64 *)hp)[0] = h1; | ||
517 | ((UINT64 *)hp)[1] = h2; | ||
518 | ((UINT64 *)hp)[2] = h3; | ||
519 | ((UINT64 *)hp)[3] = h4; | ||
520 | } | ||
521 | |||
522 | /* ---------------------------------------------------------------------- */ | ||
523 | #endif /* UMAC_OUTPUT_LENGTH */ | ||
524 | /* ---------------------------------------------------------------------- */ | ||
525 | |||
526 | |||
527 | /* ---------------------------------------------------------------------- */ | ||
528 | |||
529 | static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) | ||
530 | /* This function is a wrapper for the primitive NH hash functions. It takes | ||
531 | * as argument "hc" the current hash context and a buffer which must be a | ||
532 | * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset | ||
533 | * appropriately according to how much message has been hashed already. | ||
534 | */ | ||
535 | { | ||
536 | UINT8 *key; | ||
537 | |||
538 | key = hc->nh_key + hc->bytes_hashed; | ||
539 | nh_aux(key, buf, hc->state, nbytes); | ||
540 | } | ||
541 | |||
542 | /* ---------------------------------------------------------------------- */ | ||
543 | |||
544 | static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) | ||
545 | /* We endian convert the keys on little-endian computers to */ | ||
546 | /* compensate for the lack of big-endian memory reads during hashing. */ | ||
547 | { | ||
548 | UWORD iters = num_bytes / bpw; | ||
549 | if (bpw == 4) { | ||
550 | UINT32 *p = (UINT32 *)buf; | ||
551 | do { | ||
552 | *p = LOAD_UINT32_REVERSED(p); | ||
553 | p++; | ||
554 | } while (--iters); | ||
555 | } else if (bpw == 8) { | ||
556 | UINT32 *p = (UINT32 *)buf; | ||
557 | UINT32 t; | ||
558 | do { | ||
559 | t = LOAD_UINT32_REVERSED(p+1); | ||
560 | p[1] = LOAD_UINT32_REVERSED(p); | ||
561 | p[0] = t; | ||
562 | p += 2; | ||
563 | } while (--iters); | ||
564 | } | ||
565 | } | ||
566 | #if (__LITTLE_ENDIAN__) | ||
567 | #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) | ||
568 | #else | ||
569 | #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ | ||
570 | #endif | ||
571 | |||
572 | /* ---------------------------------------------------------------------- */ | ||
573 | |||
574 | static void nh_reset(nh_ctx *hc) | ||
575 | /* Reset nh_ctx to ready for hashing of new data */ | ||
576 | { | ||
577 | hc->bytes_hashed = 0; | ||
578 | hc->next_data_empty = 0; | ||
579 | hc->state[0] = 0; | ||
580 | #if (UMAC_OUTPUT_LEN >= 8) | ||
581 | hc->state[1] = 0; | ||
582 | #endif | ||
583 | #if (UMAC_OUTPUT_LEN >= 12) | ||
584 | hc->state[2] = 0; | ||
585 | #endif | ||
586 | #if (UMAC_OUTPUT_LEN == 16) | ||
587 | hc->state[3] = 0; | ||
588 | #endif | ||
589 | |||
590 | } | ||
591 | |||
592 | /* ---------------------------------------------------------------------- */ | ||
593 | |||
594 | static void nh_init(nh_ctx *hc, aes_int_key prf_key) | ||
595 | /* Generate nh_key, endian convert and reset to be ready for hashing. */ | ||
596 | { | ||
597 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); | ||
598 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); | ||
599 | nh_reset(hc); | ||
600 | } | ||
601 | |||
602 | /* ---------------------------------------------------------------------- */ | ||
603 | |||
604 | static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) | ||
605 | /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ | ||
606 | /* even multiple of HASH_BUF_BYTES. */ | ||
607 | { | ||
608 | UINT32 i,j; | ||
609 | |||
610 | j = hc->next_data_empty; | ||
611 | if ((j + nbytes) >= HASH_BUF_BYTES) { | ||
612 | if (j) { | ||
613 | i = HASH_BUF_BYTES - j; | ||
614 | memcpy(hc->data+j, buf, i); | ||
615 | nh_transform(hc,hc->data,HASH_BUF_BYTES); | ||
616 | nbytes -= i; | ||
617 | buf += i; | ||
618 | hc->bytes_hashed += HASH_BUF_BYTES; | ||
619 | } | ||
620 | if (nbytes >= HASH_BUF_BYTES) { | ||
621 | i = nbytes & ~(HASH_BUF_BYTES - 1); | ||
622 | nh_transform(hc, buf, i); | ||
623 | nbytes -= i; | ||
624 | buf += i; | ||
625 | hc->bytes_hashed += i; | ||
626 | } | ||
627 | j = 0; | ||
628 | } | ||
629 | memcpy(hc->data + j, buf, nbytes); | ||
630 | hc->next_data_empty = j + nbytes; | ||
631 | } | ||
632 | |||
633 | /* ---------------------------------------------------------------------- */ | ||
634 | |||
635 | static void zero_pad(UINT8 *p, int nbytes) | ||
636 | { | ||
637 | /* Write "nbytes" of zeroes, beginning at "p" */ | ||
638 | if (nbytes >= (int)sizeof(UWORD)) { | ||
639 | while ((ptrdiff_t)p % sizeof(UWORD)) { | ||
640 | *p = 0; | ||
641 | nbytes--; | ||
642 | p++; | ||
643 | } | ||
644 | while (nbytes >= (int)sizeof(UWORD)) { | ||
645 | *(UWORD *)p = 0; | ||
646 | nbytes -= sizeof(UWORD); | ||
647 | p += sizeof(UWORD); | ||
648 | } | ||
649 | } | ||
650 | while (nbytes) { | ||
651 | *p = 0; | ||
652 | nbytes--; | ||
653 | p++; | ||
654 | } | ||
655 | } | ||
656 | |||
657 | /* ---------------------------------------------------------------------- */ | ||
658 | |||
659 | static void nh_final(nh_ctx *hc, UINT8 *result) | ||
660 | /* After passing some number of data buffers to nh_update() for integration | ||
661 | * into an NH context, nh_final is called to produce a hash result. If any | ||
662 | * bytes are in the buffer hc->data, incorporate them into the | ||
663 | * NH context. Finally, add into the NH accumulation "state" the total number | ||
664 | * of bits hashed. The resulting numbers are written to the buffer "result". | ||
665 | * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. | ||
666 | */ | ||
667 | { | ||
668 | int nh_len, nbits; | ||
669 | |||
670 | if (hc->next_data_empty != 0) { | ||
671 | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & | ||
672 | ~(L1_PAD_BOUNDARY - 1)); | ||
673 | zero_pad(hc->data + hc->next_data_empty, | ||
674 | nh_len - hc->next_data_empty); | ||
675 | nh_transform(hc, hc->data, nh_len); | ||
676 | hc->bytes_hashed += hc->next_data_empty; | ||
677 | } else if (hc->bytes_hashed == 0) { | ||
678 | nh_len = L1_PAD_BOUNDARY; | ||
679 | zero_pad(hc->data, L1_PAD_BOUNDARY); | ||
680 | nh_transform(hc, hc->data, nh_len); | ||
681 | } | ||
682 | |||
683 | nbits = (hc->bytes_hashed << 3); | ||
684 | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; | ||
685 | #if (UMAC_OUTPUT_LEN >= 8) | ||
686 | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; | ||
687 | #endif | ||
688 | #if (UMAC_OUTPUT_LEN >= 12) | ||
689 | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; | ||
690 | #endif | ||
691 | #if (UMAC_OUTPUT_LEN == 16) | ||
692 | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; | ||
693 | #endif | ||
694 | nh_reset(hc); | ||
695 | } | ||
696 | |||
697 | /* ---------------------------------------------------------------------- */ | ||
698 | |||
699 | static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len, | ||
700 | UINT32 unpadded_len, UINT8 *result) | ||
701 | /* All-in-one nh_update() and nh_final() equivalent. | ||
702 | * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is | ||
703 | * well aligned | ||
704 | */ | ||
705 | { | ||
706 | UINT32 nbits; | ||
707 | |||
708 | /* Initialize the hash state */ | ||
709 | nbits = (unpadded_len << 3); | ||
710 | |||
711 | ((UINT64 *)result)[0] = nbits; | ||
712 | #if (UMAC_OUTPUT_LEN >= 8) | ||
713 | ((UINT64 *)result)[1] = nbits; | ||
714 | #endif | ||
715 | #if (UMAC_OUTPUT_LEN >= 12) | ||
716 | ((UINT64 *)result)[2] = nbits; | ||
717 | #endif | ||
718 | #if (UMAC_OUTPUT_LEN == 16) | ||
719 | ((UINT64 *)result)[3] = nbits; | ||
720 | #endif | ||
721 | |||
722 | nh_aux(hc->nh_key, buf, result, padded_len); | ||
723 | } | ||
724 | |||
725 | /* ---------------------------------------------------------------------- */ | ||
726 | /* ---------------------------------------------------------------------- */ | ||
727 | /* ----- Begin UHASH Section -------------------------------------------- */ | ||
728 | /* ---------------------------------------------------------------------- */ | ||
729 | /* ---------------------------------------------------------------------- */ | ||
730 | |||
731 | /* UHASH is a multi-layered algorithm. Data presented to UHASH is first | ||
732 | * hashed by NH. The NH output is then hashed by a polynomial-hash layer | ||
733 | * unless the initial data to be hashed is short. After the polynomial- | ||
734 | * layer, an inner-product hash is used to produce the final UHASH output. | ||
735 | * | ||
736 | * UHASH provides two interfaces, one all-at-once and another where data | ||
737 | * buffers are presented sequentially. In the sequential interface, the | ||
738 | * UHASH client calls the routine uhash_update() as many times as necessary. | ||
739 | * When there is no more data to be fed to UHASH, the client calls | ||
740 | * uhash_final() which | ||
741 | * calculates the UHASH output. Before beginning another UHASH calculation | ||
742 | * the uhash_reset() routine must be called. The all-at-once UHASH routine, | ||
743 | * uhash(), is equivalent to the sequence of calls uhash_update() and | ||
744 | * uhash_final(); however it is optimized and should be | ||
745 | * used whenever the sequential interface is not necessary. | ||
746 | * | ||
747 | * The routine uhash_init() initializes the uhash_ctx data structure and | ||
748 | * must be called once, before any other UHASH routine. | ||
749 | */ | ||
750 | |||
751 | /* ---------------------------------------------------------------------- */ | ||
752 | /* ----- Constants and uhash_ctx ---------------------------------------- */ | ||
753 | /* ---------------------------------------------------------------------- */ | ||
754 | |||
755 | /* ---------------------------------------------------------------------- */ | ||
756 | /* ----- Poly hash and Inner-Product hash Constants --------------------- */ | ||
757 | /* ---------------------------------------------------------------------- */ | ||
758 | |||
759 | /* Primes and masks */ | ||
760 | #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ | ||
761 | #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ | ||
762 | #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ | ||
763 | |||
764 | |||
765 | /* ---------------------------------------------------------------------- */ | ||
766 | |||
767 | typedef struct uhash_ctx { | ||
768 | nh_ctx hash; /* Hash context for L1 NH hash */ | ||
769 | UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ | ||
770 | UINT64 poly_accum[STREAMS]; /* poly hash result */ | ||
771 | UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ | ||
772 | UINT32 ip_trans[STREAMS]; /* Inner-product translation */ | ||
773 | UINT32 msg_len; /* Total length of data passed */ | ||
774 | /* to uhash */ | ||
775 | } uhash_ctx; | ||
776 | typedef struct uhash_ctx *uhash_ctx_t; | ||
777 | |||
778 | /* ---------------------------------------------------------------------- */ | ||
779 | |||
780 | |||
781 | /* The polynomial hashes use Horner's rule to evaluate a polynomial one | ||
782 | * word at a time. As described in the specification, poly32 and poly64 | ||
783 | * require keys from special domains. The following implementations exploit | ||
784 | * the special domains to avoid overflow. The results are not guaranteed to | ||
785 | * be within Z_p32 and Z_p64, but the Inner-Product hash implementation | ||
786 | * patches any errant values. | ||
787 | */ | ||
788 | |||
789 | static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) | ||
790 | { | ||
791 | UINT32 key_hi = (UINT32)(key >> 32), | ||
792 | key_lo = (UINT32)key, | ||
793 | cur_hi = (UINT32)(cur >> 32), | ||
794 | cur_lo = (UINT32)cur, | ||
795 | x_lo, | ||
796 | x_hi; | ||
797 | UINT64 X,T,res; | ||
798 | |||
799 | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); | ||
800 | x_lo = (UINT32)X; | ||
801 | x_hi = (UINT32)(X >> 32); | ||
802 | |||
803 | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); | ||
804 | |||
805 | T = ((UINT64)x_lo << 32); | ||
806 | res += T; | ||
807 | if (res < T) | ||
808 | res += 59; | ||
809 | |||
810 | res += data; | ||
811 | if (res < data) | ||
812 | res += 59; | ||
813 | |||
814 | return res; | ||
815 | } | ||
816 | |||
817 | |||
818 | /* Although UMAC is specified to use a ramped polynomial hash scheme, this | ||
819 | * implementation does not handle all ramp levels. Because we don't handle | ||
820 | * the ramp up to p128 modulus in this implementation, we are limited to | ||
821 | * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 | ||
822 | * bytes input to UMAC per tag, ie. 16MB). | ||
823 | */ | ||
824 | static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) | ||
825 | { | ||
826 | int i; | ||
827 | UINT64 *data=(UINT64*)data_in; | ||
828 | |||
829 | for (i = 0; i < STREAMS; i++) { | ||
830 | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { | ||
831 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | ||
832 | hc->poly_key_8[i], p64 - 1); | ||
833 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | ||
834 | hc->poly_key_8[i], (data[i] - 59)); | ||
835 | } else { | ||
836 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | ||
837 | hc->poly_key_8[i], data[i]); | ||
838 | } | ||
839 | } | ||
840 | } | ||
841 | |||
842 | |||
843 | /* ---------------------------------------------------------------------- */ | ||
844 | |||
845 | |||
846 | /* The final step in UHASH is an inner-product hash. The poly hash | ||
847 | * produces a result not neccesarily WORD_LEN bytes long. The inner- | ||
848 | * product hash breaks the polyhash output into 16-bit chunks and | ||
849 | * multiplies each with a 36 bit key. | ||
850 | */ | ||
851 | |||
852 | static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) | ||
853 | { | ||
854 | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); | ||
855 | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); | ||
856 | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); | ||
857 | t = t + ipkp[3] * (UINT64)(UINT16)(data); | ||
858 | |||
859 | return t; | ||
860 | } | ||
861 | |||
862 | static UINT32 ip_reduce_p36(UINT64 t) | ||
863 | { | ||
864 | /* Divisionless modular reduction */ | ||
865 | UINT64 ret; | ||
866 | |||
867 | ret = (t & m36) + 5 * (t >> 36); | ||
868 | if (ret >= p36) | ||
869 | ret -= p36; | ||
870 | |||
871 | /* return least significant 32 bits */ | ||
872 | return (UINT32)(ret); | ||
873 | } | ||
874 | |||
875 | |||
876 | /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then | ||
877 | * the polyhash stage is skipped and ip_short is applied directly to the | ||
878 | * NH output. | ||
879 | */ | ||
880 | static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) | ||
881 | { | ||
882 | UINT64 t; | ||
883 | UINT64 *nhp = (UINT64 *)nh_res; | ||
884 | |||
885 | t = ip_aux(0,ahc->ip_keys, nhp[0]); | ||
886 | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); | ||
887 | #if (UMAC_OUTPUT_LEN >= 8) | ||
888 | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); | ||
889 | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); | ||
890 | #endif | ||
891 | #if (UMAC_OUTPUT_LEN >= 12) | ||
892 | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); | ||
893 | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); | ||
894 | #endif | ||
895 | #if (UMAC_OUTPUT_LEN == 16) | ||
896 | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); | ||
897 | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); | ||
898 | #endif | ||
899 | } | ||
900 | |||
901 | /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then | ||
902 | * the polyhash stage is not skipped and ip_long is applied to the | ||
903 | * polyhash output. | ||
904 | */ | ||
905 | static void ip_long(uhash_ctx_t ahc, u_char *res) | ||
906 | { | ||
907 | int i; | ||
908 | UINT64 t; | ||
909 | |||
910 | for (i = 0; i < STREAMS; i++) { | ||
911 | /* fix polyhash output not in Z_p64 */ | ||
912 | if (ahc->poly_accum[i] >= p64) | ||
913 | ahc->poly_accum[i] -= p64; | ||
914 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); | ||
915 | STORE_UINT32_BIG((UINT32 *)res+i, | ||
916 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); | ||
917 | } | ||
918 | } | ||
919 | |||
920 | |||
921 | /* ---------------------------------------------------------------------- */ | ||
922 | |||
923 | /* ---------------------------------------------------------------------- */ | ||
924 | |||
925 | /* Reset uhash context for next hash session */ | ||
926 | static int uhash_reset(uhash_ctx_t pc) | ||
927 | { | ||
928 | nh_reset(&pc->hash); | ||
929 | pc->msg_len = 0; | ||
930 | pc->poly_accum[0] = 1; | ||
931 | #if (UMAC_OUTPUT_LEN >= 8) | ||
932 | pc->poly_accum[1] = 1; | ||
933 | #endif | ||
934 | #if (UMAC_OUTPUT_LEN >= 12) | ||
935 | pc->poly_accum[2] = 1; | ||
936 | #endif | ||
937 | #if (UMAC_OUTPUT_LEN == 16) | ||
938 | pc->poly_accum[3] = 1; | ||
939 | #endif | ||
940 | return 1; | ||
941 | } | ||
942 | |||
943 | /* ---------------------------------------------------------------------- */ | ||
944 | |||
945 | /* Given a pointer to the internal key needed by kdf() and a uhash context, | ||
946 | * initialize the NH context and generate keys needed for poly and inner- | ||
947 | * product hashing. All keys are endian adjusted in memory so that native | ||
948 | * loads cause correct keys to be in registers during calculation. | ||
949 | */ | ||
950 | static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) | ||
951 | { | ||
952 | int i; | ||
953 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; | ||
954 | |||
955 | /* Zero the entire uhash context */ | ||
956 | memset(ahc, 0, sizeof(uhash_ctx)); | ||
957 | |||
958 | /* Initialize the L1 hash */ | ||
959 | nh_init(&ahc->hash, prf_key); | ||
960 | |||
961 | /* Setup L2 hash variables */ | ||
962 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ | ||
963 | for (i = 0; i < STREAMS; i++) { | ||
964 | /* Fill keys from the buffer, skipping bytes in the buffer not | ||
965 | * used by this implementation. Endian reverse the keys if on a | ||
966 | * little-endian computer. | ||
967 | */ | ||
968 | memcpy(ahc->poly_key_8+i, buf+24*i, 8); | ||
969 | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); | ||
970 | /* Mask the 64-bit keys to their special domain */ | ||
971 | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; | ||
972 | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ | ||
973 | } | ||
974 | |||
975 | /* Setup L3-1 hash variables */ | ||
976 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ | ||
977 | for (i = 0; i < STREAMS; i++) | ||
978 | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), | ||
979 | 4*sizeof(UINT64)); | ||
980 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), | ||
981 | sizeof(ahc->ip_keys)); | ||
982 | for (i = 0; i < STREAMS*4; i++) | ||
983 | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ | ||
984 | |||
985 | /* Setup L3-2 hash variables */ | ||
986 | /* Fill buffer with index 4 key */ | ||
987 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); | ||
988 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), | ||
989 | STREAMS * sizeof(UINT32)); | ||
990 | } | ||
991 | |||
992 | /* ---------------------------------------------------------------------- */ | ||
993 | |||
994 | #if 0 | ||
995 | static uhash_ctx_t uhash_alloc(u_char key[]) | ||
996 | { | ||
997 | /* Allocate memory and force to a 16-byte boundary. */ | ||
998 | uhash_ctx_t ctx; | ||
999 | u_char bytes_to_add; | ||
1000 | aes_int_key prf_key; | ||
1001 | |||
1002 | ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); | ||
1003 | if (ctx) { | ||
1004 | if (ALLOC_BOUNDARY) { | ||
1005 | bytes_to_add = ALLOC_BOUNDARY - | ||
1006 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); | ||
1007 | ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); | ||
1008 | *((u_char *)ctx - 1) = bytes_to_add; | ||
1009 | } | ||
1010 | aes_key_setup(key,prf_key); | ||
1011 | uhash_init(ctx, prf_key); | ||
1012 | } | ||
1013 | return (ctx); | ||
1014 | } | ||
1015 | #endif | ||
1016 | |||
1017 | /* ---------------------------------------------------------------------- */ | ||
1018 | |||
1019 | #if 0 | ||
1020 | static int uhash_free(uhash_ctx_t ctx) | ||
1021 | { | ||
1022 | /* Free memory allocated by uhash_alloc */ | ||
1023 | u_char bytes_to_sub; | ||
1024 | |||
1025 | if (ctx) { | ||
1026 | if (ALLOC_BOUNDARY) { | ||
1027 | bytes_to_sub = *((u_char *)ctx - 1); | ||
1028 | ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); | ||
1029 | } | ||
1030 | free(ctx); | ||
1031 | } | ||
1032 | return (1); | ||
1033 | } | ||
1034 | #endif | ||
1035 | /* ---------------------------------------------------------------------- */ | ||
1036 | |||
1037 | static int uhash_update(uhash_ctx_t ctx, u_char *input, long len) | ||
1038 | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and | ||
1039 | * hash each one with NH, calling the polyhash on each NH output. | ||
1040 | */ | ||
1041 | { | ||
1042 | UWORD bytes_hashed, bytes_remaining; | ||
1043 | UINT8 nh_result[STREAMS*sizeof(UINT64)]; | ||
1044 | |||
1045 | if (ctx->msg_len + len <= L1_KEY_LEN) { | ||
1046 | nh_update(&ctx->hash, (UINT8 *)input, len); | ||
1047 | ctx->msg_len += len; | ||
1048 | } else { | ||
1049 | |||
1050 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; | ||
1051 | if (ctx->msg_len == L1_KEY_LEN) | ||
1052 | bytes_hashed = L1_KEY_LEN; | ||
1053 | |||
1054 | if (bytes_hashed + len >= L1_KEY_LEN) { | ||
1055 | |||
1056 | /* If some bytes have been passed to the hash function */ | ||
1057 | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ | ||
1058 | /* bytes to complete the current nh_block. */ | ||
1059 | if (bytes_hashed) { | ||
1060 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); | ||
1061 | nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining); | ||
1062 | nh_final(&ctx->hash, nh_result); | ||
1063 | ctx->msg_len += bytes_remaining; | ||
1064 | poly_hash(ctx,(UINT32 *)nh_result); | ||
1065 | len -= bytes_remaining; | ||
1066 | input += bytes_remaining; | ||
1067 | } | ||
1068 | |||
1069 | /* Hash directly from input stream if enough bytes */ | ||
1070 | while (len >= L1_KEY_LEN) { | ||
1071 | nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN, | ||
1072 | L1_KEY_LEN, nh_result); | ||
1073 | ctx->msg_len += L1_KEY_LEN; | ||
1074 | len -= L1_KEY_LEN; | ||
1075 | input += L1_KEY_LEN; | ||
1076 | poly_hash(ctx,(UINT32 *)nh_result); | ||
1077 | } | ||
1078 | } | ||
1079 | |||
1080 | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ | ||
1081 | if (len) { | ||
1082 | nh_update(&ctx->hash, (UINT8 *)input, len); | ||
1083 | ctx->msg_len += len; | ||
1084 | } | ||
1085 | } | ||
1086 | |||
1087 | return (1); | ||
1088 | } | ||
1089 | |||
1090 | /* ---------------------------------------------------------------------- */ | ||
1091 | |||
1092 | static int uhash_final(uhash_ctx_t ctx, u_char *res) | ||
1093 | /* Incorporate any pending data, pad, and generate tag */ | ||
1094 | { | ||
1095 | UINT8 nh_result[STREAMS*sizeof(UINT64)]; | ||
1096 | |||
1097 | if (ctx->msg_len > L1_KEY_LEN) { | ||
1098 | if (ctx->msg_len % L1_KEY_LEN) { | ||
1099 | nh_final(&ctx->hash, nh_result); | ||
1100 | poly_hash(ctx,(UINT32 *)nh_result); | ||
1101 | } | ||
1102 | ip_long(ctx, res); | ||
1103 | } else { | ||
1104 | nh_final(&ctx->hash, nh_result); | ||
1105 | ip_short(ctx,nh_result, res); | ||
1106 | } | ||
1107 | uhash_reset(ctx); | ||
1108 | return (1); | ||
1109 | } | ||
1110 | |||
1111 | /* ---------------------------------------------------------------------- */ | ||
1112 | |||
1113 | #if 0 | ||
1114 | static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) | ||
1115 | /* assumes that msg is in a writable buffer of length divisible by */ | ||
1116 | /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ | ||
1117 | { | ||
1118 | UINT8 nh_result[STREAMS*sizeof(UINT64)]; | ||
1119 | UINT32 nh_len; | ||
1120 | int extra_zeroes_needed; | ||
1121 | |||
1122 | /* If the message to be hashed is no longer than L1_HASH_LEN, we skip | ||
1123 | * the polyhash. | ||
1124 | */ | ||
1125 | if (len <= L1_KEY_LEN) { | ||
1126 | if (len == 0) /* If zero length messages will not */ | ||
1127 | nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ | ||
1128 | else | ||
1129 | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); | ||
1130 | extra_zeroes_needed = nh_len - len; | ||
1131 | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); | ||
1132 | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); | ||
1133 | ip_short(ahc,nh_result, res); | ||
1134 | } else { | ||
1135 | /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH | ||
1136 | * output to poly_hash(). | ||
1137 | */ | ||
1138 | do { | ||
1139 | nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); | ||
1140 | poly_hash(ahc,(UINT32 *)nh_result); | ||
1141 | len -= L1_KEY_LEN; | ||
1142 | msg += L1_KEY_LEN; | ||
1143 | } while (len >= L1_KEY_LEN); | ||
1144 | if (len) { | ||
1145 | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); | ||
1146 | extra_zeroes_needed = nh_len - len; | ||
1147 | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); | ||
1148 | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); | ||
1149 | poly_hash(ahc,(UINT32 *)nh_result); | ||
1150 | } | ||
1151 | |||
1152 | ip_long(ahc, res); | ||
1153 | } | ||
1154 | |||
1155 | uhash_reset(ahc); | ||
1156 | return 1; | ||
1157 | } | ||
1158 | #endif | ||
1159 | |||
1160 | /* ---------------------------------------------------------------------- */ | ||
1161 | /* ---------------------------------------------------------------------- */ | ||
1162 | /* ----- Begin UMAC Section --------------------------------------------- */ | ||
1163 | /* ---------------------------------------------------------------------- */ | ||
1164 | /* ---------------------------------------------------------------------- */ | ||
1165 | |||
1166 | /* The UMAC interface has two interfaces, an all-at-once interface where | ||
1167 | * the entire message to be authenticated is passed to UMAC in one buffer, | ||
1168 | * and a sequential interface where the message is presented a little at a | ||
1169 | * time. The all-at-once is more optimaized than the sequential version and | ||
1170 | * should be preferred when the sequential interface is not required. | ||
1171 | */ | ||
1172 | struct umac_ctx { | ||
1173 | uhash_ctx hash; /* Hash function for message compression */ | ||
1174 | pdf_ctx pdf; /* PDF for hashed output */ | ||
1175 | void *free_ptr; /* Address to free this struct via */ | ||
1176 | } umac_ctx; | ||
1177 | |||
1178 | /* ---------------------------------------------------------------------- */ | ||
1179 | |||
1180 | #if 0 | ||
1181 | int umac_reset(struct umac_ctx *ctx) | ||
1182 | /* Reset the hash function to begin a new authentication. */ | ||
1183 | { | ||
1184 | uhash_reset(&ctx->hash); | ||
1185 | return (1); | ||
1186 | } | ||
1187 | #endif | ||
1188 | |||
1189 | /* ---------------------------------------------------------------------- */ | ||
1190 | |||
1191 | int umac_delete(struct umac_ctx *ctx) | ||
1192 | /* Deallocate the ctx structure */ | ||
1193 | { | ||
1194 | if (ctx) { | ||
1195 | if (ALLOC_BOUNDARY) | ||
1196 | ctx = (struct umac_ctx *)ctx->free_ptr; | ||
1197 | free(ctx); | ||
1198 | } | ||
1199 | return (1); | ||
1200 | } | ||
1201 | |||
1202 | /* ---------------------------------------------------------------------- */ | ||
1203 | |||
1204 | struct umac_ctx *umac_new(u_char key[]) | ||
1205 | /* Dynamically allocate a umac_ctx struct, initialize variables, | ||
1206 | * generate subkeys from key. Align to 16-byte boundary. | ||
1207 | */ | ||
1208 | { | ||
1209 | struct umac_ctx *ctx, *octx; | ||
1210 | size_t bytes_to_add; | ||
1211 | aes_int_key prf_key; | ||
1212 | |||
1213 | octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY); | ||
1214 | if (ctx) { | ||
1215 | if (ALLOC_BOUNDARY) { | ||
1216 | bytes_to_add = ALLOC_BOUNDARY - | ||
1217 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); | ||
1218 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); | ||
1219 | } | ||
1220 | ctx->free_ptr = octx; | ||
1221 | aes_key_setup(key,prf_key); | ||
1222 | pdf_init(&ctx->pdf, prf_key); | ||
1223 | uhash_init(&ctx->hash, prf_key); | ||
1224 | } | ||
1225 | |||
1226 | return (ctx); | ||
1227 | } | ||
1228 | |||
1229 | /* ---------------------------------------------------------------------- */ | ||
1230 | |||
1231 | int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8]) | ||
1232 | /* Incorporate any pending data, pad, and generate tag */ | ||
1233 | { | ||
1234 | uhash_final(&ctx->hash, (u_char *)tag); | ||
1235 | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); | ||
1236 | |||
1237 | return (1); | ||
1238 | } | ||
1239 | |||
1240 | /* ---------------------------------------------------------------------- */ | ||
1241 | |||
1242 | int umac_update(struct umac_ctx *ctx, u_char *input, long len) | ||
1243 | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ | ||
1244 | /* hash each one, calling the PDF on the hashed output whenever the hash- */ | ||
1245 | /* output buffer is full. */ | ||
1246 | { | ||
1247 | uhash_update(&ctx->hash, input, len); | ||
1248 | return (1); | ||
1249 | } | ||
1250 | |||
1251 | /* ---------------------------------------------------------------------- */ | ||
1252 | |||
1253 | #if 0 | ||
1254 | int umac(struct umac_ctx *ctx, u_char *input, | ||
1255 | long len, u_char tag[], | ||
1256 | u_char nonce[8]) | ||
1257 | /* All-in-one version simply calls umac_update() and umac_final(). */ | ||
1258 | { | ||
1259 | uhash(&ctx->hash, input, len, (u_char *)tag); | ||
1260 | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); | ||
1261 | |||
1262 | return (1); | ||
1263 | } | ||
1264 | #endif | ||
1265 | |||
1266 | /* ---------------------------------------------------------------------- */ | ||
1267 | /* ---------------------------------------------------------------------- */ | ||
1268 | /* ----- End UMAC Section ----------------------------------------------- */ | ||
1269 | /* ---------------------------------------------------------------------- */ | ||
1270 | /* ---------------------------------------------------------------------- */ | ||
@@ -0,0 +1,123 @@ | |||
1 | /* $OpenBSD: umac.h,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */ | ||
2 | /* ----------------------------------------------------------------------- | ||
3 | * | ||
4 | * umac.h -- C Implementation UMAC Message Authentication | ||
5 | * | ||
6 | * Version 0.93a of rfc4418.txt -- 2006 July 14 | ||
7 | * | ||
8 | * For a full description of UMAC message authentication see the UMAC | ||
9 | * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac | ||
10 | * Please report bugs and suggestions to the UMAC webpage. | ||
11 | * | ||
12 | * Copyright (c) 1999-2004 Ted Krovetz | ||
13 | * | ||
14 | * Permission to use, copy, modify, and distribute this software and | ||
15 | * its documentation for any purpose and with or without fee, is hereby | ||
16 | * granted provided that the above copyright notice appears in all copies | ||
17 | * and in supporting documentation, and that the name of the copyright | ||
18 | * holder not be used in advertising or publicity pertaining to | ||
19 | * distribution of the software without specific, written prior permission. | ||
20 | * | ||
21 | * Comments should be directed to Ted Krovetz (tdk@acm.org) | ||
22 | * | ||
23 | * ---------------------------------------------------------------------- */ | ||
24 | |||
25 | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// | ||
26 | * | ||
27 | * 1) This version does not work properly on messages larger than 16MB | ||
28 | * | ||
29 | * 2) If you set the switch to use SSE2, then all data must be 16-byte | ||
30 | * aligned | ||
31 | * | ||
32 | * 3) When calling the function umac(), it is assumed that msg is in | ||
33 | * a writable buffer of length divisible by 32 bytes. The message itself | ||
34 | * does not have to fill the entire buffer, but bytes beyond msg may be | ||
35 | * zeroed. | ||
36 | * | ||
37 | * 4) Two free AES implementations are supported by this implementation of | ||
38 | * UMAC. Paulo Barreto's version is in the public domain and can be found | ||
39 | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for | ||
40 | * "Barreto"). The only two files needed are rijndael-alg-fst.c and | ||
41 | * rijndael-alg-fst.h. | ||
42 | * Brian Gladman's version is distributed with GNU Public lisence | ||
43 | * and can be found at http://fp.gladman.plus.com/AES/index.htm. It | ||
44 | * includes a fast IA-32 assembly version. | ||
45 | * | ||
46 | /////////////////////////////////////////////////////////////////////// */ | ||
47 | #ifndef HEADER_UMAC_H | ||
48 | #define HEADER_UMAC_H | ||
49 | |||
50 | |||
51 | #ifdef __cplusplus | ||
52 | extern "C" { | ||
53 | #endif | ||
54 | |||
55 | struct umac_ctx *umac_new(u_char key[]); | ||
56 | /* Dynamically allocate a umac_ctx struct, initialize variables, | ||
57 | * generate subkeys from key. | ||
58 | */ | ||
59 | |||
60 | #if 0 | ||
61 | int umac_reset(struct umac_ctx *ctx); | ||
62 | /* Reset a umac_ctx to begin authenicating a new message */ | ||
63 | #endif | ||
64 | |||
65 | int umac_update(struct umac_ctx *ctx, u_char *input, long len); | ||
66 | /* Incorporate len bytes pointed to by input into context ctx */ | ||
67 | |||
68 | int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8]); | ||
69 | /* Incorporate any pending data and the ctr value, and return tag. | ||
70 | * This function returns error code if ctr < 0. | ||
71 | */ | ||
72 | |||
73 | int umac_delete(struct umac_ctx *ctx); | ||
74 | /* Deallocate the context structure */ | ||
75 | |||
76 | #if 0 | ||
77 | int umac(struct umac_ctx *ctx, u_char *input, | ||
78 | long len, u_char tag[], | ||
79 | u_char nonce[8]); | ||
80 | /* All-in-one implementation of the functions Reset, Update and Final */ | ||
81 | #endif | ||
82 | |||
83 | /* uhash.h */ | ||
84 | |||
85 | |||
86 | #if 0 | ||
87 | typedef struct uhash_ctx *uhash_ctx_t; | ||
88 | /* The uhash_ctx structure is defined by the implementation of the */ | ||
89 | /* UHASH functions. */ | ||
90 | |||
91 | uhash_ctx_t uhash_alloc(u_char key[16]); | ||
92 | /* Dynamically allocate a uhash_ctx struct and generate subkeys using */ | ||
93 | /* the kdf and kdf_key passed in. If kdf_key_len is 0 then RC6 is */ | ||
94 | /* used to generate key with a fixed key. If kdf_key_len > 0 but kdf */ | ||
95 | /* is NULL then the first 16 bytes pointed at by kdf_key is used as a */ | ||
96 | /* key for an RC6 based KDF. */ | ||
97 | |||
98 | int uhash_free(uhash_ctx_t ctx); | ||
99 | |||
100 | int uhash_set_params(uhash_ctx_t ctx, | ||
101 | void *params); | ||
102 | |||
103 | int uhash_reset(uhash_ctx_t ctx); | ||
104 | |||
105 | int uhash_update(uhash_ctx_t ctx, | ||
106 | u_char *input, | ||
107 | long len); | ||
108 | |||
109 | int uhash_final(uhash_ctx_t ctx, | ||
110 | u_char ouput[]); | ||
111 | |||
112 | int uhash(uhash_ctx_t ctx, | ||
113 | u_char *input, | ||
114 | long len, | ||
115 | u_char output[]); | ||
116 | |||
117 | #endif | ||
118 | |||
119 | #ifdef __cplusplus | ||
120 | } | ||
121 | #endif | ||
122 | |||
123 | #endif /* HEADER_UMAC_H */ | ||