diff options
Diffstat (limited to 'xmss_fast.c')
-rw-r--r-- | xmss_fast.c | 1106 |
1 files changed, 1106 insertions, 0 deletions
diff --git a/xmss_fast.c b/xmss_fast.c new file mode 100644 index 000000000..e37447f60 --- /dev/null +++ b/xmss_fast.c | |||
@@ -0,0 +1,1106 @@ | |||
1 | /* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */ | ||
2 | /* | ||
3 | xmss_fast.c version 20160722 | ||
4 | Andreas Hülsing | ||
5 | Joost Rijneveld | ||
6 | Public domain. | ||
7 | */ | ||
8 | |||
9 | #include "includes.h" | ||
10 | #ifdef WITH_XMSS | ||
11 | |||
12 | #include <stdlib.h> | ||
13 | #include <string.h> | ||
14 | #ifdef HAVE_STDINT_H | ||
15 | #include <stdint.h> | ||
16 | #endif | ||
17 | |||
18 | #include "xmss_fast.h" | ||
19 | #include "crypto_api.h" | ||
20 | #include "xmss_wots.h" | ||
21 | #include "xmss_hash.h" | ||
22 | |||
23 | #include "xmss_commons.h" | ||
24 | #include "xmss_hash_address.h" | ||
25 | // For testing | ||
26 | #include "stdio.h" | ||
27 | |||
28 | |||
29 | |||
30 | /** | ||
31 | * Used for pseudorandom keygeneration, | ||
32 | * generates the seed for the WOTS keypair at address addr | ||
33 | * | ||
34 | * takes n byte sk_seed and returns n byte seed using 32 byte address addr. | ||
35 | */ | ||
36 | static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8]) | ||
37 | { | ||
38 | unsigned char bytes[32]; | ||
39 | // Make sure that chain addr, hash addr, and key bit are 0! | ||
40 | setChainADRS(addr,0); | ||
41 | setHashADRS(addr,0); | ||
42 | setKeyAndMask(addr,0); | ||
43 | // Generate pseudorandom value | ||
44 | addr_to_byte(bytes, addr); | ||
45 | prf(seed, bytes, sk_seed, n); | ||
46 | } | ||
47 | |||
48 | /** | ||
49 | * Initialize xmss params struct | ||
50 | * parameter names are the same as in the draft | ||
51 | * parameter k is K as used in the BDS algorithm | ||
52 | */ | ||
53 | int xmss_set_params(xmss_params *params, int n, int h, int w, int k) | ||
54 | { | ||
55 | if (k >= h || k < 2 || (h - k) % 2) { | ||
56 | fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n"); | ||
57 | return 1; | ||
58 | } | ||
59 | params->h = h; | ||
60 | params->n = n; | ||
61 | params->k = k; | ||
62 | wots_params wots_par; | ||
63 | wots_set_params(&wots_par, n, w); | ||
64 | params->wots_par = wots_par; | ||
65 | return 0; | ||
66 | } | ||
67 | |||
68 | /** | ||
69 | * Initialize BDS state struct | ||
70 | * parameter names are the same as used in the description of the BDS traversal | ||
71 | */ | ||
72 | void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf) | ||
73 | { | ||
74 | state->stack = stack; | ||
75 | state->stackoffset = stackoffset; | ||
76 | state->stacklevels = stacklevels; | ||
77 | state->auth = auth; | ||
78 | state->keep = keep; | ||
79 | state->treehash = treehash; | ||
80 | state->retain = retain; | ||
81 | state->next_leaf = next_leaf; | ||
82 | } | ||
83 | |||
84 | /** | ||
85 | * Initialize xmssmt_params struct | ||
86 | * parameter names are the same as in the draft | ||
87 | * | ||
88 | * Especially h is the total tree height, i.e. the XMSS trees have height h/d | ||
89 | */ | ||
90 | int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k) | ||
91 | { | ||
92 | if (h % d) { | ||
93 | fprintf(stderr, "d must divide h without remainder!\n"); | ||
94 | return 1; | ||
95 | } | ||
96 | params->h = h; | ||
97 | params->d = d; | ||
98 | params->n = n; | ||
99 | params->index_len = (h + 7) / 8; | ||
100 | xmss_params xmss_par; | ||
101 | if (xmss_set_params(&xmss_par, n, (h/d), w, k)) { | ||
102 | return 1; | ||
103 | } | ||
104 | params->xmss_par = xmss_par; | ||
105 | return 0; | ||
106 | } | ||
107 | |||
108 | /** | ||
109 | * Computes a leaf from a WOTS public key using an L-tree. | ||
110 | */ | ||
111 | static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) | ||
112 | { | ||
113 | unsigned int l = params->wots_par.len; | ||
114 | unsigned int n = params->n; | ||
115 | uint32_t i = 0; | ||
116 | uint32_t height = 0; | ||
117 | uint32_t bound; | ||
118 | |||
119 | //ADRS.setTreeHeight(0); | ||
120 | setTreeHeight(addr, height); | ||
121 | |||
122 | while (l > 1) { | ||
123 | bound = l >> 1; //floor(l / 2); | ||
124 | for (i = 0; i < bound; i++) { | ||
125 | //ADRS.setTreeIndex(i); | ||
126 | setTreeIndex(addr, i); | ||
127 | //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | ||
128 | hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); | ||
129 | } | ||
130 | //if ( l % 2 == 1 ) { | ||
131 | if (l & 1) { | ||
132 | //pk[floor(l / 2) + 1] = pk[l]; | ||
133 | memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); | ||
134 | //l = ceil(l / 2); | ||
135 | l=(l>>1)+1; | ||
136 | } | ||
137 | else { | ||
138 | //l = ceil(l / 2); | ||
139 | l=(l>>1); | ||
140 | } | ||
141 | //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | ||
142 | height++; | ||
143 | setTreeHeight(addr, height); | ||
144 | } | ||
145 | //return pk[0]; | ||
146 | memcpy(leaf, wots_pk, n); | ||
147 | } | ||
148 | |||
149 | /** | ||
150 | * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | ||
151 | */ | ||
152 | static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | ||
153 | { | ||
154 | unsigned char seed[params->n]; | ||
155 | unsigned char pk[params->wots_par.keysize]; | ||
156 | |||
157 | get_seed(seed, sk_seed, params->n, ots_addr); | ||
158 | wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr); | ||
159 | |||
160 | l_tree(leaf, pk, params, pub_seed, ltree_addr); | ||
161 | } | ||
162 | |||
163 | static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) { | ||
164 | unsigned int r = params->h, i; | ||
165 | for (i = 0; i < treehash->stackusage; i++) { | ||
166 | if (state->stacklevels[state->stackoffset - i - 1] < r) { | ||
167 | r = state->stacklevels[state->stackoffset - i - 1]; | ||
168 | } | ||
169 | } | ||
170 | return r; | ||
171 | } | ||
172 | |||
173 | /** | ||
174 | * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. | ||
175 | * Currently only used for key generation. | ||
176 | * | ||
177 | */ | ||
178 | static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) | ||
179 | { | ||
180 | unsigned int idx = index; | ||
181 | unsigned int n = params->n; | ||
182 | unsigned int h = params->h; | ||
183 | unsigned int k = params->k; | ||
184 | // use three different addresses because at this point we use all three formats in parallel | ||
185 | uint32_t ots_addr[8]; | ||
186 | uint32_t ltree_addr[8]; | ||
187 | uint32_t node_addr[8]; | ||
188 | // only copy layer and tree address parts | ||
189 | memcpy(ots_addr, addr, 12); | ||
190 | // type = ots | ||
191 | setType(ots_addr, 0); | ||
192 | memcpy(ltree_addr, addr, 12); | ||
193 | setType(ltree_addr, 1); | ||
194 | memcpy(node_addr, addr, 12); | ||
195 | setType(node_addr, 2); | ||
196 | |||
197 | uint32_t lastnode, i; | ||
198 | unsigned char stack[(height+1)*n]; | ||
199 | unsigned int stacklevels[height+1]; | ||
200 | unsigned int stackoffset=0; | ||
201 | unsigned int nodeh; | ||
202 | |||
203 | lastnode = idx+(1<<height); | ||
204 | |||
205 | for (i = 0; i < h-k; i++) { | ||
206 | state->treehash[i].h = i; | ||
207 | state->treehash[i].completed = 1; | ||
208 | state->treehash[i].stackusage = 0; | ||
209 | } | ||
210 | |||
211 | i = 0; | ||
212 | for (; idx < lastnode; idx++) { | ||
213 | setLtreeADRS(ltree_addr, idx); | ||
214 | setOTSADRS(ots_addr, idx); | ||
215 | gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); | ||
216 | stacklevels[stackoffset] = 0; | ||
217 | stackoffset++; | ||
218 | if (h - k > 0 && i == 3) { | ||
219 | memcpy(state->treehash[0].node, stack+stackoffset*n, n); | ||
220 | } | ||
221 | while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) | ||
222 | { | ||
223 | nodeh = stacklevels[stackoffset-1]; | ||
224 | if (i >> nodeh == 1) { | ||
225 | memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n); | ||
226 | } | ||
227 | else { | ||
228 | if (nodeh < h - k && i >> nodeh == 3) { | ||
229 | memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n); | ||
230 | } | ||
231 | else if (nodeh >= h - k) { | ||
232 | memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n); | ||
233 | } | ||
234 | } | ||
235 | setTreeHeight(node_addr, stacklevels[stackoffset-1]); | ||
236 | setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); | ||
237 | hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed, | ||
238 | node_addr, n); | ||
239 | stacklevels[stackoffset-2]++; | ||
240 | stackoffset--; | ||
241 | } | ||
242 | i++; | ||
243 | } | ||
244 | |||
245 | for (i = 0; i < n; i++) | ||
246 | node[i] = stack[i]; | ||
247 | } | ||
248 | |||
249 | static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) { | ||
250 | int n = params->n; | ||
251 | |||
252 | uint32_t ots_addr[8]; | ||
253 | uint32_t ltree_addr[8]; | ||
254 | uint32_t node_addr[8]; | ||
255 | // only copy layer and tree address parts | ||
256 | memcpy(ots_addr, addr, 12); | ||
257 | // type = ots | ||
258 | setType(ots_addr, 0); | ||
259 | memcpy(ltree_addr, addr, 12); | ||
260 | setType(ltree_addr, 1); | ||
261 | memcpy(node_addr, addr, 12); | ||
262 | setType(node_addr, 2); | ||
263 | |||
264 | setLtreeADRS(ltree_addr, treehash->next_idx); | ||
265 | setOTSADRS(ots_addr, treehash->next_idx); | ||
266 | |||
267 | unsigned char nodebuffer[2 * n]; | ||
268 | unsigned int nodeheight = 0; | ||
269 | gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr); | ||
270 | while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { | ||
271 | memcpy(nodebuffer + n, nodebuffer, n); | ||
272 | memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n); | ||
273 | setTreeHeight(node_addr, nodeheight); | ||
274 | setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1))); | ||
275 | hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n); | ||
276 | nodeheight++; | ||
277 | treehash->stackusage--; | ||
278 | state->stackoffset--; | ||
279 | } | ||
280 | if (nodeheight == treehash->h) { // this also implies stackusage == 0 | ||
281 | memcpy(treehash->node, nodebuffer, n); | ||
282 | treehash->completed = 1; | ||
283 | } | ||
284 | else { | ||
285 | memcpy(state->stack + state->stackoffset*n, nodebuffer, n); | ||
286 | treehash->stackusage++; | ||
287 | state->stacklevels[state->stackoffset] = nodeheight; | ||
288 | state->stackoffset++; | ||
289 | treehash->next_idx++; | ||
290 | } | ||
291 | } | ||
292 | |||
293 | /** | ||
294 | * Computes a root node given a leaf and an authapth | ||
295 | */ | ||
296 | static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) | ||
297 | { | ||
298 | unsigned int n = params->n; | ||
299 | |||
300 | uint32_t i, j; | ||
301 | unsigned char buffer[2*n]; | ||
302 | |||
303 | // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | ||
304 | // Otherwise, it is the other way around | ||
305 | if (leafidx & 1) { | ||
306 | for (j = 0; j < n; j++) | ||
307 | buffer[n+j] = leaf[j]; | ||
308 | for (j = 0; j < n; j++) | ||
309 | buffer[j] = authpath[j]; | ||
310 | } | ||
311 | else { | ||
312 | for (j = 0; j < n; j++) | ||
313 | buffer[j] = leaf[j]; | ||
314 | for (j = 0; j < n; j++) | ||
315 | buffer[n+j] = authpath[j]; | ||
316 | } | ||
317 | authpath += n; | ||
318 | |||
319 | for (i=0; i < params->h-1; i++) { | ||
320 | setTreeHeight(addr, i); | ||
321 | leafidx >>= 1; | ||
322 | setTreeIndex(addr, leafidx); | ||
323 | if (leafidx&1) { | ||
324 | hash_h(buffer+n, buffer, pub_seed, addr, n); | ||
325 | for (j = 0; j < n; j++) | ||
326 | buffer[j] = authpath[j]; | ||
327 | } | ||
328 | else { | ||
329 | hash_h(buffer, buffer, pub_seed, addr, n); | ||
330 | for (j = 0; j < n; j++) | ||
331 | buffer[j+n] = authpath[j]; | ||
332 | } | ||
333 | authpath += n; | ||
334 | } | ||
335 | setTreeHeight(addr, (params->h-1)); | ||
336 | leafidx >>= 1; | ||
337 | setTreeIndex(addr, leafidx); | ||
338 | hash_h(root, buffer, pub_seed, addr, n); | ||
339 | } | ||
340 | |||
341 | /** | ||
342 | * Performs one treehash update on the instance that needs it the most. | ||
343 | * Returns 1 if such an instance was not found | ||
344 | **/ | ||
345 | static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { | ||
346 | uint32_t i, j; | ||
347 | unsigned int level, l_min, low; | ||
348 | unsigned int h = params->h; | ||
349 | unsigned int k = params->k; | ||
350 | unsigned int used = 0; | ||
351 | |||
352 | for (j = 0; j < updates; j++) { | ||
353 | l_min = h; | ||
354 | level = h - k; | ||
355 | for (i = 0; i < h - k; i++) { | ||
356 | if (state->treehash[i].completed) { | ||
357 | low = h; | ||
358 | } | ||
359 | else if (state->treehash[i].stackusage == 0) { | ||
360 | low = i; | ||
361 | } | ||
362 | else { | ||
363 | low = treehash_minheight_on_stack(state, params, &(state->treehash[i])); | ||
364 | } | ||
365 | if (low < l_min) { | ||
366 | level = i; | ||
367 | l_min = low; | ||
368 | } | ||
369 | } | ||
370 | if (level == h - k) { | ||
371 | break; | ||
372 | } | ||
373 | treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr); | ||
374 | used++; | ||
375 | } | ||
376 | return updates - used; | ||
377 | } | ||
378 | |||
379 | /** | ||
380 | * Updates the state (typically NEXT_i) by adding a leaf and updating the stack | ||
381 | * Returns 1 if all leaf nodes have already been processed | ||
382 | **/ | ||
383 | static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { | ||
384 | uint32_t ltree_addr[8]; | ||
385 | uint32_t node_addr[8]; | ||
386 | uint32_t ots_addr[8]; | ||
387 | |||
388 | int n = params->n; | ||
389 | int h = params->h; | ||
390 | int k = params->k; | ||
391 | |||
392 | int nodeh; | ||
393 | int idx = state->next_leaf; | ||
394 | if (idx == 1 << h) { | ||
395 | return 1; | ||
396 | } | ||
397 | |||
398 | // only copy layer and tree address parts | ||
399 | memcpy(ots_addr, addr, 12); | ||
400 | // type = ots | ||
401 | setType(ots_addr, 0); | ||
402 | memcpy(ltree_addr, addr, 12); | ||
403 | setType(ltree_addr, 1); | ||
404 | memcpy(node_addr, addr, 12); | ||
405 | setType(node_addr, 2); | ||
406 | |||
407 | setOTSADRS(ots_addr, idx); | ||
408 | setLtreeADRS(ltree_addr, idx); | ||
409 | |||
410 | gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); | ||
411 | |||
412 | state->stacklevels[state->stackoffset] = 0; | ||
413 | state->stackoffset++; | ||
414 | if (h - k > 0 && idx == 3) { | ||
415 | memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n); | ||
416 | } | ||
417 | while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { | ||
418 | nodeh = state->stacklevels[state->stackoffset-1]; | ||
419 | if (idx >> nodeh == 1) { | ||
420 | memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n); | ||
421 | } | ||
422 | else { | ||
423 | if (nodeh < h - k && idx >> nodeh == 3) { | ||
424 | memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n); | ||
425 | } | ||
426 | else if (nodeh >= h - k) { | ||
427 | memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n); | ||
428 | } | ||
429 | } | ||
430 | setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]); | ||
431 | setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1))); | ||
432 | hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n); | ||
433 | |||
434 | state->stacklevels[state->stackoffset-2]++; | ||
435 | state->stackoffset--; | ||
436 | } | ||
437 | state->next_leaf++; | ||
438 | return 0; | ||
439 | } | ||
440 | |||
441 | /** | ||
442 | * Returns the auth path for node leaf_idx and computes the auth path for the | ||
443 | * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo | ||
444 | * in "Post Quantum Cryptography", Springer 2009. | ||
445 | */ | ||
446 | static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8]) | ||
447 | { | ||
448 | unsigned int i; | ||
449 | unsigned int n = params->n; | ||
450 | unsigned int h = params->h; | ||
451 | unsigned int k = params->k; | ||
452 | |||
453 | unsigned int tau = h; | ||
454 | unsigned int startidx; | ||
455 | unsigned int offset, rowidx; | ||
456 | unsigned char buf[2 * n]; | ||
457 | |||
458 | uint32_t ots_addr[8]; | ||
459 | uint32_t ltree_addr[8]; | ||
460 | uint32_t node_addr[8]; | ||
461 | // only copy layer and tree address parts | ||
462 | memcpy(ots_addr, addr, 12); | ||
463 | // type = ots | ||
464 | setType(ots_addr, 0); | ||
465 | memcpy(ltree_addr, addr, 12); | ||
466 | setType(ltree_addr, 1); | ||
467 | memcpy(node_addr, addr, 12); | ||
468 | setType(node_addr, 2); | ||
469 | |||
470 | for (i = 0; i < h; i++) { | ||
471 | if (! ((leaf_idx >> i) & 1)) { | ||
472 | tau = i; | ||
473 | break; | ||
474 | } | ||
475 | } | ||
476 | |||
477 | if (tau > 0) { | ||
478 | memcpy(buf, state->auth + (tau-1) * n, n); | ||
479 | // we need to do this before refreshing state->keep to prevent overwriting | ||
480 | memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n); | ||
481 | } | ||
482 | if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) { | ||
483 | memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n); | ||
484 | } | ||
485 | if (tau == 0) { | ||
486 | setLtreeADRS(ltree_addr, leaf_idx); | ||
487 | setOTSADRS(ots_addr, leaf_idx); | ||
488 | gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr); | ||
489 | } | ||
490 | else { | ||
491 | setTreeHeight(node_addr, (tau-1)); | ||
492 | setTreeIndex(node_addr, leaf_idx >> tau); | ||
493 | hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n); | ||
494 | for (i = 0; i < tau; i++) { | ||
495 | if (i < h - k) { | ||
496 | memcpy(state->auth + i * n, state->treehash[i].node, n); | ||
497 | } | ||
498 | else { | ||
499 | offset = (1 << (h - 1 - i)) + i - h; | ||
500 | rowidx = ((leaf_idx >> i) - 1) >> 1; | ||
501 | memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n); | ||
502 | } | ||
503 | } | ||
504 | |||
505 | for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) { | ||
506 | startidx = leaf_idx + 1 + 3 * (1 << i); | ||
507 | if (startidx < 1U << h) { | ||
508 | state->treehash[i].h = i; | ||
509 | state->treehash[i].next_idx = startidx; | ||
510 | state->treehash[i].completed = 0; | ||
511 | state->treehash[i].stackusage = 0; | ||
512 | } | ||
513 | } | ||
514 | } | ||
515 | } | ||
516 | |||
517 | /* | ||
518 | * Generates a XMSS key pair for a given parameter set. | ||
519 | * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | ||
520 | * Format pk: [root || PUB_SEED] omitting algo oid. | ||
521 | */ | ||
522 | int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params) | ||
523 | { | ||
524 | unsigned int n = params->n; | ||
525 | // Set idx = 0 | ||
526 | sk[0] = 0; | ||
527 | sk[1] = 0; | ||
528 | sk[2] = 0; | ||
529 | sk[3] = 0; | ||
530 | // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) | ||
531 | randombytes(sk+4, 3*n); | ||
532 | // Copy PUB_SEED to public key | ||
533 | memcpy(pk+n, sk+4+2*n, n); | ||
534 | |||
535 | uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
536 | |||
537 | // Compute root | ||
538 | treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr); | ||
539 | // copy root to sk | ||
540 | memcpy(sk+4+3*n, pk, n); | ||
541 | return 0; | ||
542 | } | ||
543 | |||
544 | /** | ||
545 | * Signs a message. | ||
546 | * Returns | ||
547 | * 1. an array containing the signature followed by the message AND | ||
548 | * 2. an updated secret key! | ||
549 | * | ||
550 | */ | ||
551 | int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params) | ||
552 | { | ||
553 | unsigned int h = params->h; | ||
554 | unsigned int n = params->n; | ||
555 | unsigned int k = params->k; | ||
556 | uint16_t i = 0; | ||
557 | |||
558 | // Extract SK | ||
559 | unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; | ||
560 | unsigned char sk_seed[n]; | ||
561 | memcpy(sk_seed, sk+4, n); | ||
562 | unsigned char sk_prf[n]; | ||
563 | memcpy(sk_prf, sk+4+n, n); | ||
564 | unsigned char pub_seed[n]; | ||
565 | memcpy(pub_seed, sk+4+2*n, n); | ||
566 | |||
567 | // index as 32 bytes string | ||
568 | unsigned char idx_bytes_32[32]; | ||
569 | to_byte(idx_bytes_32, idx, 32); | ||
570 | |||
571 | unsigned char hash_key[3*n]; | ||
572 | |||
573 | // Update SK | ||
574 | sk[0] = ((idx + 1) >> 24) & 255; | ||
575 | sk[1] = ((idx + 1) >> 16) & 255; | ||
576 | sk[2] = ((idx + 1) >> 8) & 255; | ||
577 | sk[3] = (idx + 1) & 255; | ||
578 | // -- Secret key for this non-forward-secure version is now updated. | ||
579 | // -- A productive implementation should use a file handle instead and write the updated secret key at this point! | ||
580 | |||
581 | // Init working params | ||
582 | unsigned char R[n]; | ||
583 | unsigned char msg_h[n]; | ||
584 | unsigned char ots_seed[n]; | ||
585 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
586 | |||
587 | // --------------------------------- | ||
588 | // Message Hashing | ||
589 | // --------------------------------- | ||
590 | |||
591 | // Message Hash: | ||
592 | // First compute pseudorandom value | ||
593 | prf(R, idx_bytes_32, sk_prf, n); | ||
594 | // Generate hash key (R || root || idx) | ||
595 | memcpy(hash_key, R, n); | ||
596 | memcpy(hash_key+n, sk+4+3*n, n); | ||
597 | to_byte(hash_key+2*n, idx, n); | ||
598 | // Then use it for message digest | ||
599 | h_msg(msg_h, msg, msglen, hash_key, 3*n, n); | ||
600 | |||
601 | // Start collecting signature | ||
602 | *sig_msg_len = 0; | ||
603 | |||
604 | // Copy index to signature | ||
605 | sig_msg[0] = (idx >> 24) & 255; | ||
606 | sig_msg[1] = (idx >> 16) & 255; | ||
607 | sig_msg[2] = (idx >> 8) & 255; | ||
608 | sig_msg[3] = idx & 255; | ||
609 | |||
610 | sig_msg += 4; | ||
611 | *sig_msg_len += 4; | ||
612 | |||
613 | // Copy R to signature | ||
614 | for (i = 0; i < n; i++) | ||
615 | sig_msg[i] = R[i]; | ||
616 | |||
617 | sig_msg += n; | ||
618 | *sig_msg_len += n; | ||
619 | |||
620 | // ---------------------------------- | ||
621 | // Now we start to "really sign" | ||
622 | // ---------------------------------- | ||
623 | |||
624 | // Prepare Address | ||
625 | setType(ots_addr, 0); | ||
626 | setOTSADRS(ots_addr, idx); | ||
627 | |||
628 | // Compute seed for OTS key pair | ||
629 | get_seed(ots_seed, sk_seed, n, ots_addr); | ||
630 | |||
631 | // Compute WOTS signature | ||
632 | wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr); | ||
633 | |||
634 | sig_msg += params->wots_par.keysize; | ||
635 | *sig_msg_len += params->wots_par.keysize; | ||
636 | |||
637 | // the auth path was already computed during the previous round | ||
638 | memcpy(sig_msg, state->auth, h*n); | ||
639 | |||
640 | if (idx < (1U << h) - 1) { | ||
641 | bds_round(state, idx, sk_seed, params, pub_seed, ots_addr); | ||
642 | bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr); | ||
643 | } | ||
644 | |||
645 | /* TODO: save key/bds state here! */ | ||
646 | |||
647 | sig_msg += params->h*n; | ||
648 | *sig_msg_len += params->h*n; | ||
649 | |||
650 | //Whipe secret elements? | ||
651 | //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); | ||
652 | |||
653 | |||
654 | memcpy(sig_msg, msg, msglen); | ||
655 | *sig_msg_len += msglen; | ||
656 | |||
657 | return 0; | ||
658 | } | ||
659 | |||
660 | /** | ||
661 | * Verifies a given message signature pair under a given public key. | ||
662 | */ | ||
663 | int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params) | ||
664 | { | ||
665 | unsigned int n = params->n; | ||
666 | |||
667 | unsigned long long i, m_len; | ||
668 | unsigned long idx=0; | ||
669 | unsigned char wots_pk[params->wots_par.keysize]; | ||
670 | unsigned char pkhash[n]; | ||
671 | unsigned char root[n]; | ||
672 | unsigned char msg_h[n]; | ||
673 | unsigned char hash_key[3*n]; | ||
674 | |||
675 | unsigned char pub_seed[n]; | ||
676 | memcpy(pub_seed, pk+n, n); | ||
677 | |||
678 | // Init addresses | ||
679 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
680 | uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
681 | uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
682 | |||
683 | setType(ots_addr, 0); | ||
684 | setType(ltree_addr, 1); | ||
685 | setType(node_addr, 2); | ||
686 | |||
687 | // Extract index | ||
688 | idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | ||
689 | printf("verify:: idx = %lu\n", idx); | ||
690 | |||
691 | // Generate hash key (R || root || idx) | ||
692 | memcpy(hash_key, sig_msg+4,n); | ||
693 | memcpy(hash_key+n, pk, n); | ||
694 | to_byte(hash_key+2*n, idx, n); | ||
695 | |||
696 | sig_msg += (n+4); | ||
697 | sig_msg_len -= (n+4); | ||
698 | |||
699 | // hash message | ||
700 | unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n; | ||
701 | m_len = sig_msg_len - tmp_sig_len; | ||
702 | h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); | ||
703 | |||
704 | //----------------------- | ||
705 | // Verify signature | ||
706 | //----------------------- | ||
707 | |||
708 | // Prepare Address | ||
709 | setOTSADRS(ots_addr, idx); | ||
710 | // Check WOTS signature | ||
711 | wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr); | ||
712 | |||
713 | sig_msg += params->wots_par.keysize; | ||
714 | sig_msg_len -= params->wots_par.keysize; | ||
715 | |||
716 | // Compute Ltree | ||
717 | setLtreeADRS(ltree_addr, idx); | ||
718 | l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr); | ||
719 | |||
720 | // Compute root | ||
721 | validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr); | ||
722 | |||
723 | sig_msg += params->h*n; | ||
724 | sig_msg_len -= params->h*n; | ||
725 | |||
726 | for (i = 0; i < n; i++) | ||
727 | if (root[i] != pk[i]) | ||
728 | goto fail; | ||
729 | |||
730 | *msglen = sig_msg_len; | ||
731 | for (i = 0; i < *msglen; i++) | ||
732 | msg[i] = sig_msg[i]; | ||
733 | |||
734 | return 0; | ||
735 | |||
736 | |||
737 | fail: | ||
738 | *msglen = sig_msg_len; | ||
739 | for (i = 0; i < *msglen; i++) | ||
740 | msg[i] = 0; | ||
741 | *msglen = -1; | ||
742 | return -1; | ||
743 | } | ||
744 | |||
745 | /* | ||
746 | * Generates a XMSSMT key pair for a given parameter set. | ||
747 | * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | ||
748 | * Format pk: [root || PUB_SEED] omitting algo oid. | ||
749 | */ | ||
750 | int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params) | ||
751 | { | ||
752 | unsigned int n = params->n; | ||
753 | unsigned int i; | ||
754 | unsigned char ots_seed[params->n]; | ||
755 | // Set idx = 0 | ||
756 | for (i = 0; i < params->index_len; i++) { | ||
757 | sk[i] = 0; | ||
758 | } | ||
759 | // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) | ||
760 | randombytes(sk+params->index_len, 3*n); | ||
761 | // Copy PUB_SEED to public key | ||
762 | memcpy(pk+n, sk+params->index_len+2*n, n); | ||
763 | |||
764 | // Set address to point on the single tree on layer d-1 | ||
765 | uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
766 | setLayerADRS(addr, (params->d-1)); | ||
767 | // Set up state and compute wots signatures for all but topmost tree root | ||
768 | for (i = 0; i < params->d - 1; i++) { | ||
769 | // Compute seed for OTS key pair | ||
770 | treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); | ||
771 | setLayerADRS(addr, (i+1)); | ||
772 | get_seed(ots_seed, sk+params->index_len, n, addr); | ||
773 | wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr); | ||
774 | } | ||
775 | treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); | ||
776 | memcpy(sk+params->index_len+3*n, pk, n); | ||
777 | return 0; | ||
778 | } | ||
779 | |||
780 | /** | ||
781 | * Signs a message. | ||
782 | * Returns | ||
783 | * 1. an array containing the signature followed by the message AND | ||
784 | * 2. an updated secret key! | ||
785 | * | ||
786 | */ | ||
787 | int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params) | ||
788 | { | ||
789 | unsigned int n = params->n; | ||
790 | |||
791 | unsigned int tree_h = params->xmss_par.h; | ||
792 | unsigned int h = params->h; | ||
793 | unsigned int k = params->xmss_par.k; | ||
794 | unsigned int idx_len = params->index_len; | ||
795 | uint64_t idx_tree; | ||
796 | uint32_t idx_leaf; | ||
797 | uint64_t i, j; | ||
798 | int needswap_upto = -1; | ||
799 | unsigned int updates; | ||
800 | |||
801 | unsigned char sk_seed[n]; | ||
802 | unsigned char sk_prf[n]; | ||
803 | unsigned char pub_seed[n]; | ||
804 | // Init working params | ||
805 | unsigned char R[n]; | ||
806 | unsigned char msg_h[n]; | ||
807 | unsigned char hash_key[3*n]; | ||
808 | unsigned char ots_seed[n]; | ||
809 | uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
810 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
811 | unsigned char idx_bytes_32[32]; | ||
812 | bds_state tmp; | ||
813 | |||
814 | // Extract SK | ||
815 | unsigned long long idx = 0; | ||
816 | for (i = 0; i < idx_len; i++) { | ||
817 | idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i); | ||
818 | } | ||
819 | |||
820 | memcpy(sk_seed, sk+idx_len, n); | ||
821 | memcpy(sk_prf, sk+idx_len+n, n); | ||
822 | memcpy(pub_seed, sk+idx_len+2*n, n); | ||
823 | |||
824 | // Update SK | ||
825 | for (i = 0; i < idx_len; i++) { | ||
826 | sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255; | ||
827 | } | ||
828 | // -- Secret key for this non-forward-secure version is now updated. | ||
829 | // -- A productive implementation should use a file handle instead and write the updated secret key at this point! | ||
830 | |||
831 | |||
832 | // --------------------------------- | ||
833 | // Message Hashing | ||
834 | // --------------------------------- | ||
835 | |||
836 | // Message Hash: | ||
837 | // First compute pseudorandom value | ||
838 | to_byte(idx_bytes_32, idx, 32); | ||
839 | prf(R, idx_bytes_32, sk_prf, n); | ||
840 | // Generate hash key (R || root || idx) | ||
841 | memcpy(hash_key, R, n); | ||
842 | memcpy(hash_key+n, sk+idx_len+3*n, n); | ||
843 | to_byte(hash_key+2*n, idx, n); | ||
844 | |||
845 | // Then use it for message digest | ||
846 | h_msg(msg_h, msg, msglen, hash_key, 3*n, n); | ||
847 | |||
848 | // Start collecting signature | ||
849 | *sig_msg_len = 0; | ||
850 | |||
851 | // Copy index to signature | ||
852 | for (i = 0; i < idx_len; i++) { | ||
853 | sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255; | ||
854 | } | ||
855 | |||
856 | sig_msg += idx_len; | ||
857 | *sig_msg_len += idx_len; | ||
858 | |||
859 | // Copy R to signature | ||
860 | for (i = 0; i < n; i++) | ||
861 | sig_msg[i] = R[i]; | ||
862 | |||
863 | sig_msg += n; | ||
864 | *sig_msg_len += n; | ||
865 | |||
866 | // ---------------------------------- | ||
867 | // Now we start to "really sign" | ||
868 | // ---------------------------------- | ||
869 | |||
870 | // Handle lowest layer separately as it is slightly different... | ||
871 | |||
872 | // Prepare Address | ||
873 | setType(ots_addr, 0); | ||
874 | idx_tree = idx >> tree_h; | ||
875 | idx_leaf = (idx & ((1 << tree_h)-1)); | ||
876 | setLayerADRS(ots_addr, 0); | ||
877 | setTreeADRS(ots_addr, idx_tree); | ||
878 | setOTSADRS(ots_addr, idx_leaf); | ||
879 | |||
880 | // Compute seed for OTS key pair | ||
881 | get_seed(ots_seed, sk_seed, n, ots_addr); | ||
882 | |||
883 | // Compute WOTS signature | ||
884 | wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); | ||
885 | |||
886 | sig_msg += params->xmss_par.wots_par.keysize; | ||
887 | *sig_msg_len += params->xmss_par.wots_par.keysize; | ||
888 | |||
889 | memcpy(sig_msg, states[0].auth, tree_h*n); | ||
890 | sig_msg += tree_h*n; | ||
891 | *sig_msg_len += tree_h*n; | ||
892 | |||
893 | // prepare signature of remaining layers | ||
894 | for (i = 1; i < params->d; i++) { | ||
895 | // put WOTS signature in place | ||
896 | memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize); | ||
897 | |||
898 | sig_msg += params->xmss_par.wots_par.keysize; | ||
899 | *sig_msg_len += params->xmss_par.wots_par.keysize; | ||
900 | |||
901 | // put AUTH nodes in place | ||
902 | memcpy(sig_msg, states[i].auth, tree_h*n); | ||
903 | sig_msg += tree_h*n; | ||
904 | *sig_msg_len += tree_h*n; | ||
905 | } | ||
906 | |||
907 | updates = (tree_h - k) >> 1; | ||
908 | |||
909 | setTreeADRS(addr, (idx_tree + 1)); | ||
910 | // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists | ||
911 | if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) { | ||
912 | bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr); | ||
913 | } | ||
914 | |||
915 | for (i = 0; i < params->d; i++) { | ||
916 | // check if we're not at the end of a tree | ||
917 | if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) { | ||
918 | idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1); | ||
919 | idx_tree = (idx >> (tree_h * (i+1))); | ||
920 | setLayerADRS(addr, i); | ||
921 | setTreeADRS(addr, idx_tree); | ||
922 | if (i == (unsigned int) (needswap_upto + 1)) { | ||
923 | bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr); | ||
924 | } | ||
925 | updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr); | ||
926 | setTreeADRS(addr, (idx_tree + 1)); | ||
927 | // if a NEXT-tree exists for this level; | ||
928 | if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) { | ||
929 | if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) { | ||
930 | bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr); | ||
931 | updates--; | ||
932 | } | ||
933 | } | ||
934 | } | ||
935 | else if (idx < (1ULL << h) - 1) { | ||
936 | memcpy(&tmp, states+params->d + i, sizeof(bds_state)); | ||
937 | memcpy(states+params->d + i, states + i, sizeof(bds_state)); | ||
938 | memcpy(states + i, &tmp, sizeof(bds_state)); | ||
939 | |||
940 | setLayerADRS(ots_addr, (i+1)); | ||
941 | setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h))); | ||
942 | setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1))); | ||
943 | |||
944 | get_seed(ots_seed, sk+params->index_len, n, ots_addr); | ||
945 | wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); | ||
946 | |||
947 | states[params->d + i].stackoffset = 0; | ||
948 | states[params->d + i].next_leaf = 0; | ||
949 | |||
950 | updates--; // WOTS-signing counts as one update | ||
951 | needswap_upto = i; | ||
952 | for (j = 0; j < tree_h-k; j++) { | ||
953 | states[i].treehash[j].completed = 1; | ||
954 | } | ||
955 | } | ||
956 | } | ||
957 | |||
958 | //Whipe secret elements? | ||
959 | //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); | ||
960 | |||
961 | memcpy(sig_msg, msg, msglen); | ||
962 | *sig_msg_len += msglen; | ||
963 | |||
964 | return 0; | ||
965 | } | ||
966 | |||
967 | /** | ||
968 | * Verifies a given message signature pair under a given public key. | ||
969 | */ | ||
970 | int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params) | ||
971 | { | ||
972 | unsigned int n = params->n; | ||
973 | |||
974 | unsigned int tree_h = params->xmss_par.h; | ||
975 | unsigned int idx_len = params->index_len; | ||
976 | uint64_t idx_tree; | ||
977 | uint32_t idx_leaf; | ||
978 | |||
979 | unsigned long long i, m_len; | ||
980 | unsigned long long idx=0; | ||
981 | unsigned char wots_pk[params->xmss_par.wots_par.keysize]; | ||
982 | unsigned char pkhash[n]; | ||
983 | unsigned char root[n]; | ||
984 | unsigned char msg_h[n]; | ||
985 | unsigned char hash_key[3*n]; | ||
986 | |||
987 | unsigned char pub_seed[n]; | ||
988 | memcpy(pub_seed, pk+n, n); | ||
989 | |||
990 | // Init addresses | ||
991 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
992 | uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
993 | uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | ||
994 | |||
995 | // Extract index | ||
996 | for (i = 0; i < idx_len; i++) { | ||
997 | idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i)); | ||
998 | } | ||
999 | printf("verify:: idx = %llu\n", idx); | ||
1000 | sig_msg += idx_len; | ||
1001 | sig_msg_len -= idx_len; | ||
1002 | |||
1003 | // Generate hash key (R || root || idx) | ||
1004 | memcpy(hash_key, sig_msg,n); | ||
1005 | memcpy(hash_key+n, pk, n); | ||
1006 | to_byte(hash_key+2*n, idx, n); | ||
1007 | |||
1008 | sig_msg += n; | ||
1009 | sig_msg_len -= n; | ||
1010 | |||
1011 | |||
1012 | // hash message (recall, R is now on pole position at sig_msg | ||
1013 | unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n); | ||
1014 | m_len = sig_msg_len - tmp_sig_len; | ||
1015 | h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); | ||
1016 | |||
1017 | |||
1018 | //----------------------- | ||
1019 | // Verify signature | ||
1020 | //----------------------- | ||
1021 | |||
1022 | // Prepare Address | ||
1023 | idx_tree = idx >> tree_h; | ||
1024 | idx_leaf = (idx & ((1 << tree_h)-1)); | ||
1025 | setLayerADRS(ots_addr, 0); | ||
1026 | setTreeADRS(ots_addr, idx_tree); | ||
1027 | setType(ots_addr, 0); | ||
1028 | |||
1029 | memcpy(ltree_addr, ots_addr, 12); | ||
1030 | setType(ltree_addr, 1); | ||
1031 | |||
1032 | memcpy(node_addr, ltree_addr, 12); | ||
1033 | setType(node_addr, 2); | ||
1034 | |||
1035 | setOTSADRS(ots_addr, idx_leaf); | ||
1036 | |||
1037 | // Check WOTS signature | ||
1038 | wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr); | ||
1039 | |||
1040 | sig_msg += params->xmss_par.wots_par.keysize; | ||
1041 | sig_msg_len -= params->xmss_par.wots_par.keysize; | ||
1042 | |||
1043 | // Compute Ltree | ||
1044 | setLtreeADRS(ltree_addr, idx_leaf); | ||
1045 | l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); | ||
1046 | |||
1047 | // Compute root | ||
1048 | validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); | ||
1049 | |||
1050 | sig_msg += tree_h*n; | ||
1051 | sig_msg_len -= tree_h*n; | ||
1052 | |||
1053 | for (i = 1; i < params->d; i++) { | ||
1054 | // Prepare Address | ||
1055 | idx_leaf = (idx_tree & ((1 << tree_h)-1)); | ||
1056 | idx_tree = idx_tree >> tree_h; | ||
1057 | |||
1058 | setLayerADRS(ots_addr, i); | ||
1059 | setTreeADRS(ots_addr, idx_tree); | ||
1060 | setType(ots_addr, 0); | ||
1061 | |||
1062 | memcpy(ltree_addr, ots_addr, 12); | ||
1063 | setType(ltree_addr, 1); | ||
1064 | |||
1065 | memcpy(node_addr, ltree_addr, 12); | ||
1066 | setType(node_addr, 2); | ||
1067 | |||
1068 | setOTSADRS(ots_addr, idx_leaf); | ||
1069 | |||
1070 | // Check WOTS signature | ||
1071 | wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr); | ||
1072 | |||
1073 | sig_msg += params->xmss_par.wots_par.keysize; | ||
1074 | sig_msg_len -= params->xmss_par.wots_par.keysize; | ||
1075 | |||
1076 | // Compute Ltree | ||
1077 | setLtreeADRS(ltree_addr, idx_leaf); | ||
1078 | l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); | ||
1079 | |||
1080 | // Compute root | ||
1081 | validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); | ||
1082 | |||
1083 | sig_msg += tree_h*n; | ||
1084 | sig_msg_len -= tree_h*n; | ||
1085 | |||
1086 | } | ||
1087 | |||
1088 | for (i = 0; i < n; i++) | ||
1089 | if (root[i] != pk[i]) | ||
1090 | goto fail; | ||
1091 | |||
1092 | *msglen = sig_msg_len; | ||
1093 | for (i = 0; i < *msglen; i++) | ||
1094 | msg[i] = sig_msg[i]; | ||
1095 | |||
1096 | return 0; | ||
1097 | |||
1098 | |||
1099 | fail: | ||
1100 | *msglen = sig_msg_len; | ||
1101 | for (i = 0; i < *msglen; i++) | ||
1102 | msg[i] = 0; | ||
1103 | *msglen = -1; | ||
1104 | return -1; | ||
1105 | } | ||
1106 | #endif /* WITH_XMSS */ | ||