1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
SSH-KEYGEN(1) General Commands Manual SSH-KEYGEN(1)
NAME
ssh-keygen M-bM-^@M-^S authentication key generation, management and conversion
SYNOPSIS
ssh-keygen [-q] [-b bits] [-C comment] [-f output_keyfile] [-m format]
[-N new_passphrase] [-t dsa | ecdsa | ed25519 | rsa]
ssh-keygen -p [-f keyfile] [-m format] [-N new_passphrase]
[-P old_passphrase]
ssh-keygen -i [-f input_keyfile] [-m key_format]
ssh-keygen -e [-f input_keyfile] [-m key_format]
ssh-keygen -y [-f input_keyfile]
ssh-keygen -c [-C comment] [-f keyfile] [-P passphrase]
ssh-keygen -l [-v] [-E fingerprint_hash] [-f input_keyfile]
ssh-keygen -B [-f input_keyfile]
ssh-keygen -D pkcs11
ssh-keygen -F hostname [-lv] [-f known_hosts_file]
ssh-keygen -H [-f known_hosts_file]
ssh-keygen -R hostname [-f known_hosts_file]
ssh-keygen -r hostname [-g] [-f input_keyfile]
ssh-keygen -G output_file [-v] [-b bits] [-M memory] [-S start_point]
ssh-keygen -f input_file -T output_file [-v] [-a rounds] [-J num_lines]
[-j start_line] [-K checkpt] [-W generator]
ssh-keygen -I certificate_identity -s ca_key [-hU] [-D pkcs11_provider]
[-n principals] [-O option] [-V validity_interval]
[-z serial_number] file ...
ssh-keygen -L [-f input_keyfile]
ssh-keygen -A [-f prefix_path]
ssh-keygen -k -f krl_file [-u] [-s ca_public] [-z version_number]
file ...
ssh-keygen -Q -f krl_file file ...
ssh-keygen -Y check-novalidate -n namespace -s signature_file
ssh-keygen -Y sign -f key_file -n namespace file ...
ssh-keygen -Y verify -f allowed_signers_file -I signer_identity
-n namespace -s signature_file [-r revocation_file]
DESCRIPTION
ssh-keygen generates, manages and converts authentication keys for
ssh(1). ssh-keygen can create keys for use by SSH protocol version 2.
The type of key to be generated is specified with the -t option. If
invoked without any arguments, ssh-keygen will generate an RSA key.
ssh-keygen is also used to generate groups for use in Diffie-Hellman
group exchange (DH-GEX). See the MODULI GENERATION section for details.
Finally, ssh-keygen can be used to generate and update Key Revocation
Lists, and to test whether given keys have been revoked by one. See the
KEY REVOCATION LISTS section for details.
Normally each user wishing to use SSH with public key authentication runs
this once to create the authentication key in ~/.ssh/id_dsa,
~/.ssh/id_ecdsa, ~/.ssh/id_ed25519 or ~/.ssh/id_rsa. Additionally, the
system administrator may use this to generate host keys, as seen in
/etc/rc.
Normally this program generates the key and asks for a file in which to
store the private key. The public key is stored in a file with the same
name but M-bM-^@M-^\.pubM-bM-^@M-^] appended. The program also asks for a passphrase. The
passphrase may be empty to indicate no passphrase (host keys must have an
empty passphrase), or it may be a string of arbitrary length. A
passphrase is similar to a password, except it can be a phrase with a
series of words, punctuation, numbers, whitespace, or any string of
characters you want. Good passphrases are 10-30 characters long, are not
simple sentences or otherwise easily guessable (English prose has only
1-2 bits of entropy per character, and provides very bad passphrases),
and contain a mix of upper and lowercase letters, numbers, and non-
alphanumeric characters. The passphrase can be changed later by using
the -p option.
There is no way to recover a lost passphrase. If the passphrase is lost
or forgotten, a new key must be generated and the corresponding public
key copied to other machines.
ssh-keygen will by default write keys in an OpenSSH-specific format.
This format is preferred as it offers better protection for keys at rest
as well as allowing storage of key comments within the private key file
itself. The key comment may be useful to help identify the key. The
comment is initialized to M-bM-^@M-^\user@hostM-bM-^@M-^] when the key is created, but can be
changed using the -c option.
It is still possible for ssh-keygen to write the previously-used PEM
format private keys using the -m flag. This may be used when generating
new keys, and existing new-format keys may be converted using this option
in conjunction with the -p (change passphrase) flag.
After a key is generated, instructions below detail where the keys should
be placed to be activated.
The options are as follows:
-A For each of the key types (rsa, dsa, ecdsa and ed25519) for which
host keys do not exist, generate the host keys with the default
key file path, an empty passphrase, default bits for the key
type, and default comment. If -f has also been specified, its
argument is used as a prefix to the default path for the
resulting host key files. This is used by /etc/rc to generate
new host keys.
-a rounds
When saving a private key, this option specifies the number of
KDF (key derivation function) rounds used. Higher numbers result
in slower passphrase verification and increased resistance to
brute-force password cracking (should the keys be stolen).
When screening DH-GEX candidates (using the -T command), this
option specifies the number of primality tests to perform.
-B Show the bubblebabble digest of specified private or public key
file.
-b bits
Specifies the number of bits in the key to create. For RSA keys,
the minimum size is 1024 bits and the default is 3072 bits.
Generally, 3072 bits is considered sufficient. DSA keys must be
exactly 1024 bits as specified by FIPS 186-2. For ECDSA keys,
the -b flag determines the key length by selecting from one of
three elliptic curve sizes: 256, 384 or 521 bits. Attempting to
use bit lengths other than these three values for ECDSA keys will
fail. Ed25519 keys have a fixed length and the -b flag will be
ignored.
-C comment
Provides a new comment.
-c Requests changing the comment in the private and public key
files. The program will prompt for the file containing the
private keys, for the passphrase if the key has one, and for the
new comment.
-D pkcs11
Download the public keys provided by the PKCS#11 shared library
pkcs11. When used in combination with -s, this option indicates
that a CA key resides in a PKCS#11 token (see the CERTIFICATES
section for details).
-E fingerprint_hash
Specifies the hash algorithm used when displaying key
fingerprints. Valid options are: M-bM-^@M-^\md5M-bM-^@M-^] and M-bM-^@M-^\sha256M-bM-^@M-^]. The
default is M-bM-^@M-^\sha256M-bM-^@M-^].
-e This option will read a private or public OpenSSH key file and
print to stdout a public key in one of the formats specified by
the -m option. The default export format is M-bM-^@M-^\RFC4716M-bM-^@M-^]. This
option allows exporting OpenSSH keys for use by other programs,
including several commercial SSH implementations.
-F hostname | [hostname]:port
Search for the specified hostname (with optional port number) in
a known_hosts file, listing any occurrences found. This option
is useful to find hashed host names or addresses and may also be
used in conjunction with the -H option to print found keys in a
hashed format.
-f filename
Specifies the filename of the key file.
-G output_file
Generate candidate primes for DH-GEX. These primes must be
screened for safety (using the -T option) before use.
-g Use generic DNS format when printing fingerprint resource records
using the -r command.
-H Hash a known_hosts file. This replaces all hostnames and
addresses with hashed representations within the specified file;
the original content is moved to a file with a .old suffix.
These hashes may be used normally by ssh and sshd, but they do
not reveal identifying information should the file's contents be
disclosed. This option will not modify existing hashed hostnames
and is therefore safe to use on files that mix hashed and non-
hashed names.
-h When signing a key, create a host certificate instead of a user
certificate. Please see the CERTIFICATES section for details.
-I certificate_identity
Specify the key identity when signing a public key. Please see
the CERTIFICATES section for details.
-i This option will read an unencrypted private (or public) key file
in the format specified by the -m option and print an OpenSSH
compatible private (or public) key to stdout. This option allows
importing keys from other software, including several commercial
SSH implementations. The default import format is M-bM-^@M-^\RFC4716M-bM-^@M-^].
-J num_lines
Exit after screening the specified number of lines while
performing DH candidate screening using the -T option.
-j start_line
Start screening at the specified line number while performing DH
candidate screening using the -T option.
-K checkpt
Write the last line processed to the file checkpt while
performing DH candidate screening using the -T option. This will
be used to skip lines in the input file that have already been
processed if the job is restarted.
-k Generate a KRL file. In this mode, ssh-keygen will generate a
KRL file at the location specified via the -f flag that revokes
every key or certificate presented on the command line.
Keys/certificates to be revoked may be specified by public key
file or using the format described in the KEY REVOCATION LISTS
section.
-L Prints the contents of one or more certificates.
-l Show fingerprint of specified public key file. For RSA and DSA
keys ssh-keygen tries to find the matching public key file and
prints its fingerprint. If combined with -v, a visual ASCII art
representation of the key is supplied with the fingerprint.
-M memory
Specify the amount of memory to use (in megabytes) when
generating candidate moduli for DH-GEX.
-m key_format
Specify a key format for key generation, the -i (import), -e
(export) conversion options, and the -p change passphrase
operation. The latter may be used to convert between OpenSSH
private key and PEM private key formats. The supported key
formats are: M-bM-^@M-^\RFC4716M-bM-^@M-^] (RFC 4716/SSH2 public or private key),
M-bM-^@M-^\PKCS8M-bM-^@M-^] (PKCS8 public or private key) or M-bM-^@M-^\PEMM-bM-^@M-^] (PEM public key).
By default OpenSSH will write newly-generated private keys in its
own format, but when converting public keys for export the
default format is M-bM-^@M-^\RFC4716M-bM-^@M-^]. Setting a format of M-bM-^@M-^\PEMM-bM-^@M-^] when
generating or updating a supported private key type will cause
the key to be stored in the legacy PEM private key format.
-N new_passphrase
Provides the new passphrase.
-n principals
Specify one or more principals (user or host names) to be
included in a certificate when signing a key. Multiple
principals may be specified, separated by commas. Please see the
CERTIFICATES section for details.
-O option
Specify a certificate option when signing a key. This option may
be specified multiple times. See also the CERTIFICATES section
for further details.
At present, no standard options are valid for host keys. The
options that are valid for user certificates are:
clear Clear all enabled permissions. This is useful for
clearing the default set of permissions so permissions
may be added individually.
critical:name[=contents]
extension:name[=contents]
Includes an arbitrary certificate critical option or
extension. The specified name should include a domain
suffix, e.g. M-bM-^@M-^\name@example.comM-bM-^@M-^]. If contents is
specified then it is included as the contents of the
extension/option encoded as a string, otherwise the
extension/option is created with no contents (usually
indicating a flag). Extensions may be ignored by a
client or server that does not recognise them, whereas
unknown critical options will cause the certificate to be
refused.
force-command=command
Forces the execution of command instead of any shell or
command specified by the user when the certificate is
used for authentication.
no-agent-forwarding
Disable ssh-agent(1) forwarding (permitted by default).
no-port-forwarding
Disable port forwarding (permitted by default).
no-pty Disable PTY allocation (permitted by default).
no-user-rc
Disable execution of ~/.ssh/rc by sshd(8) (permitted by
default).
no-x11-forwarding
Disable X11 forwarding (permitted by default).
permit-agent-forwarding
Allows ssh-agent(1) forwarding.
permit-port-forwarding
Allows port forwarding.
permit-pty
Allows PTY allocation.
permit-user-rc
Allows execution of ~/.ssh/rc by sshd(8).
permit-X11-forwarding
Allows X11 forwarding.
source-address=address_list
Restrict the source addresses from which the certificate
is considered valid. The address_list is a comma-
separated list of one or more address/netmask pairs in
CIDR format.
-P passphrase
Provides the (old) passphrase.
-p Requests changing the passphrase of a private key file instead of
creating a new private key. The program will prompt for the file
containing the private key, for the old passphrase, and twice for
the new passphrase.
-Q Test whether keys have been revoked in a KRL.
-q Silence ssh-keygen.
-R hostname | [hostname]:port
Removes all keys belonging to the specified hostname (with
optional port number) from a known_hosts file. This option is
useful to delete hashed hosts (see the -H option above).
-r hostname
Print the SSHFP fingerprint resource record named hostname for
the specified public key file.
-S start
Specify start point (in hex) when generating candidate moduli for
DH-GEX.
-s ca_key
Certify (sign) a public key using the specified CA key. Please
see the CERTIFICATES section for details.
When generating a KRL, -s specifies a path to a CA public key
file used to revoke certificates directly by key ID or serial
number. See the KEY REVOCATION LISTS section for details.
-T output_file
Test DH group exchange candidate primes (generated using the -G
option) for safety.
-t dsa | ecdsa | ed25519 | rsa
Specifies the type of key to create. The possible values are
M-bM-^@M-^\dsaM-bM-^@M-^], M-bM-^@M-^\ecdsaM-bM-^@M-^], M-bM-^@M-^\ed25519M-bM-^@M-^], or M-bM-^@M-^\rsaM-bM-^@M-^].
This flag may also be used to specify the desired signature type
when signing certificates using an RSA CA key. The available RSA
signature variants are M-bM-^@M-^\ssh-rsaM-bM-^@M-^] (SHA1 signatures, not
recommended), M-bM-^@M-^\rsa-sha2-256M-bM-^@M-^], and M-bM-^@M-^\rsa-sha2-512M-bM-^@M-^] (the default).
-U When used in combination with -s, this option indicates that a CA
key resides in a ssh-agent(1). See the CERTIFICATES section for
more information.
-u Update a KRL. When specified with -k, keys listed via the
command line are added to the existing KRL rather than a new KRL
being created.
-V validity_interval
Specify a validity interval when signing a certificate. A
validity interval may consist of a single time, indicating that
the certificate is valid beginning now and expiring at that time,
or may consist of two times separated by a colon to indicate an
explicit time interval.
The start time may be specified as the string M-bM-^@M-^\alwaysM-bM-^@M-^] to
indicate the certificate has no specified start time, a date in
YYYYMMDD format, a time in YYYYMMDDHHMM[SS] format, a relative
time (to the current time) consisting of a minus sign followed by
an interval in the format described in the TIME FORMATS section
of sshd_config(5).
The end time may be specified as a YYYYMMDD date, a
YYYYMMDDHHMM[SS] time, a relative time starting with a plus
character or the string M-bM-^@M-^\foreverM-bM-^@M-^] to indicate that the
certificate has no expirty date.
For example: M-bM-^@M-^\+52w1dM-bM-^@M-^] (valid from now to 52 weeks and one day
from now), M-bM-^@M-^\-4w:+4wM-bM-^@M-^] (valid from four weeks ago to four weeks
from now), M-bM-^@M-^\20100101123000:20110101123000M-bM-^@M-^] (valid from 12:30 PM,
January 1st, 2010 to 12:30 PM, January 1st, 2011), M-bM-^@M-^\-1d:20110101M-bM-^@M-^]
(valid from yesterday to midnight, January 1st, 2011).
M-bM-^@M-^\-1m:foreverM-bM-^@M-^] (valid from one minute ago and never expiring).
-v Verbose mode. Causes ssh-keygen to print debugging messages
about its progress. This is helpful for debugging moduli
generation. Multiple -v options increase the verbosity. The
maximum is 3.
-W generator
Specify desired generator when testing candidate moduli for DH-
GEX.
-y This option will read a private OpenSSH format file and print an
OpenSSH public key to stdout.
-Y sign
Cryptographically sign a file or some data using a SSH key. When
signing, ssh-keygen accepts zero or more files to sign on the
command-line - if no files are specified then ssh-keygen will
sign data presented on standard input. Signatures are written to
the path of the input file with M-bM-^@M-^\.sigM-bM-^@M-^] appended, or to standard
output if the message to be signed was read from standard input.
The key used for signing is specified using the -f option and may
refer to either a private key, or a public key with the private
half available via ssh-agent(1). An additional signature
namespace, used to prevent signature confusion across different
domains of use (e.g. file signing vs email signing) must be
provided via the -n flag. Namespaces are arbitrary strings, and
may include: M-bM-^@M-^\fileM-bM-^@M-^] for file signing, M-bM-^@M-^\emailM-bM-^@M-^] for email signing.
For custom uses, it is recommended to use names following a
NAMESPACE@YOUR.DOMAIN pattern to generate unambiguous namespaces.
-Y verify
Request to verify a signature generated using ssh-keygen -Y sign
as described above. When verifying a signature, ssh-keygen
accepts a message on standard input and a signature namespace
using -n. A file containing the corresponding signature must
also be supplied using the -s flag, along with the identity of
the signer using -I and a list of allowed signers via the -f
flag. The format of the allowed signers file is documented in
the ALLOWED SIGNERS section below. A file containing revoked
keys can be passed using the -r flag. The revocation file may be
a KRL or a one-per-line list of public keys. Successful
verification by an authorized signer is signalled by ssh-keygen
-Y check-novalidate
Checks that a signature generated using ssh-keygen -Y sign has a
valid structure. This does not validate if a signature comes
from an authorized signer. When testing a signature, ssh-keygen
accepts a message on standard input and a signature namespace
using -n. A file containing the corresponding signature must
also be supplied using the -s flag. Successful testing of the
signature is signalled by ssh-keygen returning a zero exit
status.
-z serial_number
Specifies a serial number to be embedded in the certificate to
distinguish this certificate from others from the same CA. If
the serial_number is prefixed with a M-bM-^@M-^X+M-bM-^@M-^Y character, then the
serial number will be incremented for each certificate signed on
a single command-line. The default serial number is zero.
When generating a KRL, the -z flag is used to specify a KRL
version number.
MODULI GENERATION
ssh-keygen may be used to generate groups for the Diffie-Hellman Group
Exchange (DH-GEX) protocol. Generating these groups is a two-step
process: first, candidate primes are generated using a fast, but memory
intensive process. These candidate primes are then tested for
suitability (a CPU-intensive process).
Generation of primes is performed using the -G option. The desired
length of the primes may be specified by the -b option. For example:
# ssh-keygen -G moduli-2048.candidates -b 2048
By default, the search for primes begins at a random point in the desired
length range. This may be overridden using the -S option, which
specifies a different start point (in hex).
Once a set of candidates have been generated, they must be screened for
suitability. This may be performed using the -T option. In this mode
ssh-keygen will read candidates from standard input (or a file specified
using the -f option). For example:
# ssh-keygen -T moduli-2048 -f moduli-2048.candidates
By default, each candidate will be subjected to 100 primality tests.
This may be overridden using the -a option. The DH generator value will
be chosen automatically for the prime under consideration. If a specific
generator is desired, it may be requested using the -W option. Valid
generator values are 2, 3, and 5.
Screened DH groups may be installed in /etc/moduli. It is important that
this file contains moduli of a range of bit lengths and that both ends of
a connection share common moduli.
CERTIFICATES
ssh-keygen supports signing of keys to produce certificates that may be
used for user or host authentication. Certificates consist of a public
key, some identity information, zero or more principal (user or host)
names and a set of options that are signed by a Certification Authority
(CA) key. Clients or servers may then trust only the CA key and verify
its signature on a certificate rather than trusting many user/host keys.
Note that OpenSSH certificates are a different, and much simpler, format
to the X.509 certificates used in ssl(8).
ssh-keygen supports two types of certificates: user and host. User
certificates authenticate users to servers, whereas host certificates
authenticate server hosts to users. To generate a user certificate:
$ ssh-keygen -s /path/to/ca_key -I key_id /path/to/user_key.pub
The resultant certificate will be placed in /path/to/user_key-cert.pub.
A host certificate requires the -h option:
$ ssh-keygen -s /path/to/ca_key -I key_id -h /path/to/host_key.pub
The host certificate will be output to /path/to/host_key-cert.pub.
It is possible to sign using a CA key stored in a PKCS#11 token by
providing the token library using -D and identifying the CA key by
providing its public half as an argument to -s:
$ ssh-keygen -s ca_key.pub -D libpkcs11.so -I key_id user_key.pub
Similarly, it is possible for the CA key to be hosted in a ssh-agent(1).
This is indicated by the -U flag and, again, the CA key must be
identified by its public half.
$ ssh-keygen -Us ca_key.pub -I key_id user_key.pub
In all cases, key_id is a "key identifier" that is logged by the server
when the certificate is used for authentication.
Certificates may be limited to be valid for a set of principal
(user/host) names. By default, generated certificates are valid for all
users or hosts. To generate a certificate for a specified set of
principals:
$ ssh-keygen -s ca_key -I key_id -n user1,user2 user_key.pub
$ ssh-keygen -s ca_key -I key_id -h -n host.domain host_key.pub
Additional limitations on the validity and use of user certificates may
be specified through certificate options. A certificate option may
disable features of the SSH session, may be valid only when presented
from particular source addresses or may force the use of a specific
command. For a list of valid certificate options, see the documentation
for the -O option above.
Finally, certificates may be defined with a validity lifetime. The -V
option allows specification of certificate start and end times. A
certificate that is presented at a time outside this range will not be
considered valid. By default, certificates are valid from UNIX Epoch to
the distant future.
For certificates to be used for user or host authentication, the CA
public key must be trusted by sshd(8) or ssh(1). Please refer to those
manual pages for details.
KEY REVOCATION LISTS
ssh-keygen is able to manage OpenSSH format Key Revocation Lists (KRLs).
These binary files specify keys or certificates to be revoked using a
compact format, taking as little as one bit per certificate if they are
being revoked by serial number.
KRLs may be generated using the -k flag. This option reads one or more
files from the command line and generates a new KRL. The files may
either contain a KRL specification (see below) or public keys, listed one
per line. Plain public keys are revoked by listing their hash or
contents in the KRL and certificates revoked by serial number or key ID
(if the serial is zero or not available).
Revoking keys using a KRL specification offers explicit control over the
types of record used to revoke keys and may be used to directly revoke
certificates by serial number or key ID without having the complete
original certificate on hand. A KRL specification consists of lines
containing one of the following directives followed by a colon and some
directive-specific information.
serial: serial_number[-serial_number]
Revokes a certificate with the specified serial number. Serial
numbers are 64-bit values, not including zero and may be
expressed in decimal, hex or octal. If two serial numbers are
specified separated by a hyphen, then the range of serial numbers
including and between each is revoked. The CA key must have been
specified on the ssh-keygen command line using the -s option.
id: key_id
Revokes a certificate with the specified key ID string. The CA
key must have been specified on the ssh-keygen command line using
the -s option.
key: public_key
Revokes the specified key. If a certificate is listed, then it
is revoked as a plain public key.
sha1: public_key
Revokes the specified key by including its SHA1 hash in the KRL.
sha256: public_key
Revokes the specified key by including its SHA256 hash in the
KRL. KRLs that revoke keys by SHA256 hash are not supported by
OpenSSH versions prior to 7.9.
hash: fingerprint
Revokes a key using a fingerprint hash, as obtained from a
sshd(8) authentication log message or the ssh-keygen -l flag.
Only SHA256 fingerprints are supported here and resultant KRLs
are not supported by OpenSSH versions prior to 7.9.
KRLs may be updated using the -u flag in addition to -k. When this
option is specified, keys listed via the command line are merged into the
KRL, adding to those already there.
It is also possible, given a KRL, to test whether it revokes a particular
key (or keys). The -Q flag will query an existing KRL, testing each key
specified on the command line. If any key listed on the command line has
been revoked (or an error encountered) then ssh-keygen will exit with a
non-zero exit status. A zero exit status will only be returned if no key
was revoked.
ALLOWED SIGNERS
When verifying signatures, ssh-keygen uses a simple list of identities
and keys to determine whether a signature comes from an authorized
source. This "allowed signers" file uses a format patterned after the
AUTHORIZED_KEYS FILE FORMAT described in sshd(8). Each line of the file
contains the following space-separated fields: principals, options,
keytype, base64-encoded key. Empty lines and lines starting with a M-bM-^@M-^X#M-bM-^@M-^Y
are ignored as comments.
The principals field is a pattern-list (See PATTERNS in ssh_config(5))
consisting of one or more comma-separated USER@DOMAIN identity patterns
that are accepted for signing. When verifying, the identity presented
via the -I -option must match a principals pattern in order for the
corresponding key to be considered acceptable for verification.
The options (if present) consist of comma-separated option
specifications. No spaces are permitted, except within double quotes.
The following option specifications are supported (note that option
keywords are case-insensitive):
cert-authority
Indicates that this key is accepted as a certificate authority
(CA) and that certificates signed by this CA may be accepted for
verification.
namespaces="namespace-list"
Specifies a pattern-list of namespaces that are accepted for this
key. If this option is present, the signature namespace embedded
in the signature object and presented on the verification
command-line must match the specified list before the key will be
considered acceptable.
When verifying signatures made by certificates, the expected principal
name must match both the principals pattern in the allowed signers file
and the principals embedded in the certificate itself.
An example allowed signers file:
# Comments allowed at start of line
user1@example.com,user2@example.com ssh-rsa AAAAX1...
# A certificate authority, trusted for all principals in a domain.
*@example.com cert-authority ssh-ed25519 AAAB4...
# A key that is accepted only for file signing.
user2@example.com namespaces="file" ssh-ed25519 AAA41...
FILES
~/.ssh/id_dsa
~/.ssh/id_ecdsa
~/.ssh/id_ed25519
~/.ssh/id_rsa
Contains the DSA, ECDSA, Ed25519 or RSA authentication identity
of the user. This file should not be readable by anyone but the
user. It is possible to specify a passphrase when generating the
key; that passphrase will be used to encrypt the private part of
this file using 128-bit AES. This file is not automatically
accessed by ssh-keygen but it is offered as the default file for
the private key. ssh(1) will read this file when a login attempt
is made.
~/.ssh/id_dsa.pub
~/.ssh/id_ecdsa.pub
~/.ssh/id_ed25519.pub
~/.ssh/id_rsa.pub
Contains the DSA, ECDSA, Ed25519 or RSA public key for
authentication. The contents of this file should be added to
~/.ssh/authorized_keys on all machines where the user wishes to
log in using public key authentication. There is no need to keep
the contents of this file secret.
/etc/moduli
Contains Diffie-Hellman groups used for DH-GEX. The file format
is described in moduli(5).
SEE ALSO
ssh(1), ssh-add(1), ssh-agent(1), moduli(5), sshd(8)
The Secure Shell (SSH) Public Key File Format, RFC 4716, 2006.
AUTHORS
OpenSSH is a derivative of the original and free ssh 1.2.12 release by
Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo
de Raadt and Dug Song removed many bugs, re-added newer features and
created OpenSSH. Markus Friedl contributed the support for SSH protocol
versions 1.5 and 2.0.
OpenBSD 6.6 October 3, 2019 OpenBSD 6.6
|