summaryrefslogtreecommitdiff
path: root/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/nosse/pwhash_scryptsalsa208sha256_nosse.c
diff options
context:
space:
mode:
Diffstat (limited to 'toxencryptsave/crypto_pwhash_scryptsalsa208sha256/nosse/pwhash_scryptsalsa208sha256_nosse.c')
-rw-r--r--toxencryptsave/crypto_pwhash_scryptsalsa208sha256/nosse/pwhash_scryptsalsa208sha256_nosse.c309
1 files changed, 309 insertions, 0 deletions
diff --git a/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/nosse/pwhash_scryptsalsa208sha256_nosse.c b/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/nosse/pwhash_scryptsalsa208sha256_nosse.c
new file mode 100644
index 00000000..97d9ba68
--- /dev/null
+++ b/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/nosse/pwhash_scryptsalsa208sha256_nosse.c
@@ -0,0 +1,309 @@
1#ifdef HAVE_CONFIG_H
2#include "config.h"
3#endif
4#ifdef VANILLA_NACL /* toxcore only uses this when libsodium is unavailable */
5
6/*-
7 * Copyright 2009 Colin Percival
8 * Copyright 2013 Alexander Peslyak
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * This file was originally written by Colin Percival as part of the Tarsnap
33 * online backup system.
34 */
35
36#include <errno.h>
37#include <limits.h>
38#include <stdint.h>
39#include <stdlib.h>
40#include <string.h>
41
42#include "../pbkdf2-sha256.h"
43#include "../sysendian.h"
44#include "../crypto_scrypt.h"
45
46static inline void
47blkcpy(void * dest, const void * src, size_t len)
48{
49 size_t * D = (size_t *) dest;
50 const size_t * S = (const size_t *) src;
51 size_t L = len / sizeof(size_t);
52 size_t i;
53
54 for (i = 0; i < L; i++)
55 D[i] = S[i];
56}
57
58static inline void
59blkxor(void * dest, const void * src, size_t len)
60{
61 size_t * D = (size_t *) dest;
62 const size_t * S = (const size_t *) src;
63 size_t L = len / sizeof(size_t);
64 size_t i;
65
66 for (i = 0; i < L; i++)
67 D[i] ^= S[i];
68}
69
70/**
71 * salsa20_8(B):
72 * Apply the salsa20/8 core to the provided block.
73 */
74static void
75salsa20_8(uint32_t B[16])
76{
77 uint32_t x[16];
78 size_t i;
79
80 blkcpy(x, B, 64);
81 for (i = 0; i < 8; i += 2) {
82#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
83 /* Operate on columns. */
84 x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
85 x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
86
87 x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
88 x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
89
90 x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
91 x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
92
93 x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
94 x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
95
96 /* Operate on rows. */
97 x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
98 x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
99
100 x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
101 x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
102
103 x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
104 x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
105
106 x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
107 x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
108#undef R
109 }
110 for (i = 0; i < 16; i++)
111 B[i] += x[i];
112}
113
114/**
115 * blockmix_salsa8(Bin, Bout, X, r):
116 * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
117 * bytes in length; the output Bout must also be the same size. The
118 * temporary space X must be 64 bytes.
119 */
120static void
121blockmix_salsa8(const uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
122{
123 size_t i;
124
125 /* 1: X <-- B_{2r - 1} */
126 blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
127
128 /* 2: for i = 0 to 2r - 1 do */
129 for (i = 0; i < 2 * r; i += 2) {
130 /* 3: X <-- H(X \xor B_i) */
131 blkxor(X, &Bin[i * 16], 64);
132 salsa20_8(X);
133
134 /* 4: Y_i <-- X */
135 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
136 blkcpy(&Bout[i * 8], X, 64);
137
138 /* 3: X <-- H(X \xor B_i) */
139 blkxor(X, &Bin[i * 16 + 16], 64);
140 salsa20_8(X);
141
142 /* 4: Y_i <-- X */
143 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
144 blkcpy(&Bout[i * 8 + r * 16], X, 64);
145 }
146}
147
148/**
149 * integerify(B, r):
150 * Return the result of parsing B_{2r-1} as a little-endian integer.
151 */
152static inline uint64_t
153integerify(const void * B, size_t r)
154{
155 const uint32_t * X = (const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
156
157 return (((uint64_t)(X[1]) << 32) + X[0]);
158}
159
160/**
161 * smix(B, r, N, V, XY):
162 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
163 * the temporary storage V must be 128rN bytes in length; the temporary
164 * storage XY must be 256r + 64 bytes in length. The value N must be a
165 * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
166 * multiple of 64 bytes.
167 */
168static void
169smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
170{
171 uint32_t * X = XY;
172 uint32_t * Y = &XY[32 * r];
173 uint32_t * Z = &XY[64 * r];
174 uint64_t i;
175 uint64_t j;
176 size_t k;
177
178 /* 1: X <-- B */
179 for (k = 0; k < 32 * r; k++)
180 X[k] = le32dec(&B[4 * k]);
181
182 /* 2: for i = 0 to N - 1 do */
183 for (i = 0; i < N; i += 2) {
184 /* 3: V_i <-- X */
185 blkcpy(&V[i * (32 * r)], X, 128 * r);
186
187 /* 4: X <-- H(X) */
188 blockmix_salsa8(X, Y, Z, r);
189
190 /* 3: V_i <-- X */
191 blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
192
193 /* 4: X <-- H(X) */
194 blockmix_salsa8(Y, X, Z, r);
195 }
196
197 /* 6: for i = 0 to N - 1 do */
198 for (i = 0; i < N; i += 2) {
199 /* 7: j <-- Integerify(X) mod N */
200 j = integerify(X, r) & (N - 1);
201
202 /* 8: X <-- H(X \xor V_j) */
203 blkxor(X, &V[j * (32 * r)], 128 * r);
204 blockmix_salsa8(X, Y, Z, r);
205
206 /* 7: j <-- Integerify(X) mod N */
207 j = integerify(Y, r) & (N - 1);
208
209 /* 8: X <-- H(X \xor V_j) */
210 blkxor(Y, &V[j * (32 * r)], 128 * r);
211 blockmix_salsa8(Y, X, Z, r);
212 }
213 /* 10: B' <-- X */
214 for (k = 0; k < 32 * r; k++)
215 le32enc(&B[4 * k], X[k]);
216}
217
218/**
219 * escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
220 * N, r, p, buf, buflen):
221 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
222 * p, buflen) and write the result into buf. The parameters r, p, and buflen
223 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
224 * must be a power of 2 greater than 1.
225 *
226 * Return 0 on success; or -1 on error.
227 */
228int
229escrypt_kdf_nosse(escrypt_local_t * local,
230 const uint8_t * passwd, size_t passwdlen,
231 const uint8_t * salt, size_t saltlen,
232 uint64_t N, uint32_t _r, uint32_t _p,
233 uint8_t * buf, size_t buflen)
234{
235 size_t B_size, V_size, XY_size, need;
236 uint8_t * B;
237 uint32_t * V, * XY;
238 size_t r = _r, p = _p;
239 uint32_t i;
240
241 /* Sanity-check parameters. */
242#if SIZE_MAX > UINT32_MAX
243 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
244 errno = EFBIG;
245 return -1;
246 }
247#endif
248 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
249 errno = EFBIG;
250 return -1;
251 }
252 if (((N & (N - 1)) != 0) || (N < 2)) {
253 errno = EINVAL;
254 return -1;
255 }
256 if (r == 0 || p == 0) {
257 errno = EINVAL;
258 return -1;
259 }
260 if ((r > SIZE_MAX / 128 / p) ||
261#if SIZE_MAX / 256 <= UINT32_MAX
262 (r > SIZE_MAX / 256) ||
263#endif
264 (N > SIZE_MAX / 128 / r)) {
265 errno = ENOMEM;
266 return -1;
267 }
268
269 /* Allocate memory. */
270 B_size = (size_t)128 * r * p;
271 V_size = (size_t)128 * r * N;
272 need = B_size + V_size;
273 if (need < V_size) {
274 errno = ENOMEM;
275 return -1;
276 }
277 XY_size = (size_t)256 * r + 64;
278 need += XY_size;
279 if (need < XY_size) {
280 errno = ENOMEM;
281 return -1;
282 }
283 if (local->size < need) {
284 if (free_region(local))
285 return -1;
286 if (!alloc_region(local, need))
287 return -1;
288 }
289 B = (uint8_t *)local->aligned;
290 V = (uint32_t *)((uint8_t *)B + B_size);
291 XY = (uint32_t *)((uint8_t *)V + V_size);
292
293 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
294 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
295
296 /* 2: for i = 0 to p - 1 do */
297 for (i = 0; i < p; i++) {
298 /* 3: B_i <-- MF(B_i, N) */
299 smix(&B[(size_t)128 * i * r], r, N, V, XY);
300 }
301
302 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
303 PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
304
305 /* Success! */
306 return 0;
307}
308
309#endif