summaryrefslogtreecommitdiff
path: root/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
diff options
context:
space:
mode:
Diffstat (limited to 'toxencryptsave/crypto_pwhash_scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c')
-rw-r--r--toxencryptsave/crypto_pwhash_scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c398
1 files changed, 398 insertions, 0 deletions
diff --git a/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c b/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
new file mode 100644
index 00000000..856a655e
--- /dev/null
+++ b/toxencryptsave/crypto_pwhash_scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
@@ -0,0 +1,398 @@
1#ifdef HAVE_CONFIG_H
2#include "config.h"
3#endif
4#ifdef VANILLA_NACL /* toxcore only uses this when libsodium is unavailable */
5
6/*-
7 * Copyright 2009 Colin Percival
8 * Copyright 2012,2013 Alexander Peslyak
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * This file was originally written by Colin Percival as part of the Tarsnap
33 * online backup system.
34 */
35
36#if defined(HAVE_EMMINTRIN_H) || defined(_MSC_VER)
37#if __GNUC__
38# pragma GCC target("sse2")
39#endif
40#include <emmintrin.h>
41#if defined(__XOP__) && defined(DISABLED)
42# include <x86intrin.h>
43#endif
44
45#include <errno.h>
46#include <limits.h>
47#include <stdint.h>
48#include <stdlib.h>
49#include <string.h>
50
51#include "../pbkdf2-sha256.h"
52#include "../sysendian.h"
53#include "../crypto_scrypt.h"
54
55#if defined(__XOP__) && defined(DISABLED)
56#define ARX(out, in1, in2, s) \
57 out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s));
58#else
59#define ARX(out, in1, in2, s) \
60 { \
61 __m128i T = _mm_add_epi32(in1, in2); \
62 out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \
63 out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \
64 }
65#endif
66
67#define SALSA20_2ROUNDS \
68 /* Operate on "columns". */ \
69 ARX(X1, X0, X3, 7) \
70 ARX(X2, X1, X0, 9) \
71 ARX(X3, X2, X1, 13) \
72 ARX(X0, X3, X2, 18) \
73\
74 /* Rearrange data. */ \
75 X1 = _mm_shuffle_epi32(X1, 0x93); \
76 X2 = _mm_shuffle_epi32(X2, 0x4E); \
77 X3 = _mm_shuffle_epi32(X3, 0x39); \
78\
79 /* Operate on "rows". */ \
80 ARX(X3, X0, X1, 7) \
81 ARX(X2, X3, X0, 9) \
82 ARX(X1, X2, X3, 13) \
83 ARX(X0, X1, X2, 18) \
84\
85 /* Rearrange data. */ \
86 X1 = _mm_shuffle_epi32(X1, 0x39); \
87 X2 = _mm_shuffle_epi32(X2, 0x4E); \
88 X3 = _mm_shuffle_epi32(X3, 0x93);
89
90/**
91 * Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3).
92 */
93#define SALSA20_8_XOR(in, out) \
94 { \
95 __m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \
96 __m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \
97 __m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \
98 __m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \
99 SALSA20_2ROUNDS \
100 SALSA20_2ROUNDS \
101 SALSA20_2ROUNDS \
102 SALSA20_2ROUNDS \
103 (out)[0] = X0 = _mm_add_epi32(X0, Y0); \
104 (out)[1] = X1 = _mm_add_epi32(X1, Y1); \
105 (out)[2] = X2 = _mm_add_epi32(X2, Y2); \
106 (out)[3] = X3 = _mm_add_epi32(X3, Y3); \
107 }
108
109/**
110 * blockmix_salsa8(Bin, Bout, r):
111 * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
112 * bytes in length; the output Bout must also be the same size.
113 */
114static inline void
115blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r)
116{
117 __m128i X0, X1, X2, X3;
118 size_t i;
119
120 /* 1: X <-- B_{2r - 1} */
121 X0 = Bin[8 * r - 4];
122 X1 = Bin[8 * r - 3];
123 X2 = Bin[8 * r - 2];
124 X3 = Bin[8 * r - 1];
125
126 /* 3: X <-- H(X \xor B_i) */
127 /* 4: Y_i <-- X */
128 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
129 SALSA20_8_XOR(Bin, Bout)
130
131 /* 2: for i = 0 to 2r - 1 do */
132 r--;
133 for (i = 0; i < r;) {
134 /* 3: X <-- H(X \xor B_i) */
135 /* 4: Y_i <-- X */
136 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
137 SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
138
139 i++;
140
141 /* 3: X <-- H(X \xor B_i) */
142 /* 4: Y_i <-- X */
143 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
144 SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4])
145 }
146
147 /* 3: X <-- H(X \xor B_i) */
148 /* 4: Y_i <-- X */
149 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
150 SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
151}
152
153#define XOR4(in) \
154 X0 = _mm_xor_si128(X0, (in)[0]); \
155 X1 = _mm_xor_si128(X1, (in)[1]); \
156 X2 = _mm_xor_si128(X2, (in)[2]); \
157 X3 = _mm_xor_si128(X3, (in)[3]);
158
159#define XOR4_2(in1, in2) \
160 X0 = _mm_xor_si128((in1)[0], (in2)[0]); \
161 X1 = _mm_xor_si128((in1)[1], (in2)[1]); \
162 X2 = _mm_xor_si128((in1)[2], (in2)[2]); \
163 X3 = _mm_xor_si128((in1)[3], (in2)[3]);
164
165static inline uint32_t
166blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout,
167 size_t r)
168{
169 __m128i X0, X1, X2, X3;
170 size_t i;
171
172 /* 1: X <-- B_{2r - 1} */
173 XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4])
174
175 /* 3: X <-- H(X \xor B_i) */
176 /* 4: Y_i <-- X */
177 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
178 XOR4(Bin1)
179 SALSA20_8_XOR(Bin2, Bout)
180
181 /* 2: for i = 0 to 2r - 1 do */
182 r--;
183 for (i = 0; i < r;) {
184 /* 3: X <-- H(X \xor B_i) */
185 /* 4: Y_i <-- X */
186 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
187 XOR4(&Bin1[i * 8 + 4])
188 SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])
189
190 i++;
191
192 /* 3: X <-- H(X \xor B_i) */
193 /* 4: Y_i <-- X */
194 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
195 XOR4(&Bin1[i * 8])
196 SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4])
197 }
198
199 /* 3: X <-- H(X \xor B_i) */
200 /* 4: Y_i <-- X */
201 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
202 XOR4(&Bin1[i * 8 + 4])
203 SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])
204
205 return _mm_cvtsi128_si32(X0);
206}
207
208#undef ARX
209#undef SALSA20_2ROUNDS
210#undef SALSA20_8_XOR
211#undef XOR4
212#undef XOR4_2
213
214/**
215 * integerify(B, r):
216 * Return the result of parsing B_{2r-1} as a little-endian integer.
217 */
218static inline uint32_t
219integerify(const void * B, size_t r)
220{
221 return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
222}
223
224/**
225 * smix(B, r, N, V, XY):
226 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
227 * the temporary storage V must be 128rN bytes in length; the temporary
228 * storage XY must be 256r + 64 bytes in length. The value N must be a
229 * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
230 * multiple of 64 bytes.
231 */
232static void
233smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY)
234{
235 size_t s = 128 * r;
236 __m128i * X = (__m128i *) V, * Y;
237 uint32_t * X32 = (uint32_t *) V;
238 uint32_t i, j;
239 size_t k;
240
241 /* 1: X <-- B */
242 /* 3: V_i <-- X */
243 for (k = 0; k < 2 * r; k++) {
244 for (i = 0; i < 16; i++) {
245 X32[k * 16 + i] =
246 le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
247 }
248 }
249
250 /* 2: for i = 0 to N - 1 do */
251 for (i = 1; i < N - 1; i += 2) {
252 /* 4: X <-- H(X) */
253 /* 3: V_i <-- X */
254 Y = (__m128i *)((uintptr_t)(V) + i * s);
255 blockmix_salsa8(X, Y, r);
256
257 /* 4: X <-- H(X) */
258 /* 3: V_i <-- X */
259 X = (__m128i *)((uintptr_t)(V) + (i + 1) * s);
260 blockmix_salsa8(Y, X, r);
261 }
262
263 /* 4: X <-- H(X) */
264 /* 3: V_i <-- X */
265 Y = (__m128i *)((uintptr_t)(V) + i * s);
266 blockmix_salsa8(X, Y, r);
267
268 /* 4: X <-- H(X) */
269 /* 3: V_i <-- X */
270 X = (__m128i *) XY;
271 blockmix_salsa8(Y, X, r);
272
273 X32 = (uint32_t *) XY;
274 Y = (__m128i *)((uintptr_t)(XY) + s);
275
276 /* 7: j <-- Integerify(X) mod N */
277 j = integerify(X, r) & (N - 1);
278
279 /* 6: for i = 0 to N - 1 do */
280 for (i = 0; i < N; i += 2) {
281 __m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s);
282
283 /* 8: X <-- H(X \xor V_j) */
284 /* 7: j <-- Integerify(X) mod N */
285 j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1);
286 V_j = (__m128i *)((uintptr_t)(V) + j * s);
287
288 /* 8: X <-- H(X \xor V_j) */
289 /* 7: j <-- Integerify(X) mod N */
290 j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1);
291 }
292
293 /* 10: B' <-- X */
294 for (k = 0; k < 2 * r; k++) {
295 for (i = 0; i < 16; i++) {
296 le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
297 X32[k * 16 + i]);
298 }
299 }
300}
301
302/**
303 * escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
304 * N, r, p, buf, buflen):
305 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
306 * p, buflen) and write the result into buf. The parameters r, p, and buflen
307 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
308 * must be a power of 2 greater than 1.
309 *
310 * Return 0 on success; or -1 on error.
311 */
312int
313escrypt_kdf_sse(escrypt_local_t * local,
314 const uint8_t * passwd, size_t passwdlen,
315 const uint8_t * salt, size_t saltlen,
316 uint64_t N, uint32_t _r, uint32_t _p,
317 uint8_t * buf, size_t buflen)
318{
319 size_t B_size, V_size, XY_size, need;
320 uint8_t * B;
321 uint32_t * V, * XY;
322 size_t r = _r, p = _p;
323 uint32_t i;
324
325 /* Sanity-check parameters. */
326#if SIZE_MAX > UINT32_MAX
327 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
328 errno = EFBIG;
329 return -1;
330 }
331#endif
332 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
333 errno = EFBIG;
334 return -1;
335 }
336 if (N > UINT32_MAX) {
337 errno = EFBIG;
338 return -1;
339 }
340 if (((N & (N - 1)) != 0) || (N < 2)) {
341 errno = EINVAL;
342 return -1;
343 }
344 if (r == 0 || p == 0) {
345 errno = EINVAL;
346 return -1;
347 }
348 if ((r > SIZE_MAX / 128 / p) ||
349#if SIZE_MAX / 256 <= UINT32_MAX
350 (r > SIZE_MAX / 256) ||
351#endif
352 (N > SIZE_MAX / 128 / r)) {
353 errno = ENOMEM;
354 return -1;
355 }
356
357 /* Allocate memory. */
358 B_size = (size_t)128 * r * p;
359 V_size = (size_t)128 * r * N;
360 need = B_size + V_size;
361 if (need < V_size) {
362 errno = ENOMEM;
363 return -1;
364 }
365 XY_size = (size_t)256 * r + 64;
366 need += XY_size;
367 if (need < XY_size) {
368 errno = ENOMEM;
369 return -1;
370 }
371 if (local->size < need) {
372 if (free_region(local))
373 return -1;
374 if (!alloc_region(local, need))
375 return -1;
376 }
377 B = (uint8_t *)local->aligned;
378 V = (uint32_t *)((uint8_t *)B + B_size);
379 XY = (uint32_t *)((uint8_t *)V + V_size);
380
381 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
382 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
383
384 /* 2: for i = 0 to p - 1 do */
385 for (i = 0; i < p; i++) {
386 /* 3: B_i <-- MF(B_i, N) */
387 smix(&B[(size_t)128 * i * r], r, N, V, XY);
388 }
389
390 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
391 PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
392
393 /* Success! */
394 return 0;
395}
396#endif
397
398#endif