1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
|
/* Lossless_UDP.c
*
* An implementation of the Lossless_UDP protocol as seen in docs/Lossless_UDP.txt
*
Copyright (C) 2013 Tox project All Rights Reserved.
This file is part of Tox.
Tox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Tox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Tox. If not, see <http://www.gnu.org/licenses/>.
*/
//TODO: clean this file a bit.
//There are a couple of useless variables to get rid of.
#include "Lossless_UDP.h"
//maximum data packets in sent and receive queues.
#define MAX_QUEUE_NUM 16
//maximum length of the data in the data packets
//#define MAX_DATA_SIZE 1024 //defined in Lossless_UDP.h
//maximum number of data packets in the buffer
#define BUFFER_PACKET_NUM (16-1)
//Lossless UDP connection timeout.
#define CONNEXION_TIMEOUT 5
//initial amount of sync/hanshake packets to send per second.
#define SYNC_RATE 2
//initial send rate of data.
#define DATA_SYNC_RATE 30
typedef struct
{
uint8_t data[MAX_DATA_SIZE];
uint16_t size;
}Data;
typedef struct
{
IP_Port ip_port;
uint8_t status;//0 if connection is dead, 1 if attempting handshake,
//2 if handshake is done (we start sending SYNC packets)
//3 if we are sending SYNC packets and can send data
//4 if the connection has timed out.
uint8_t inbound; //1 or 2 if connection was initiated by someone else, 0 if not.
//2 if incoming_connection() has not returned it yet, 1 if it has.
uint16_t SYNC_rate;//current SYNC packet send rate packets per second.
uint16_t data_rate;//current data packet send rate packets per second.
uint64_t last_SYNC; //time at which our last SYNC packet was sent.
uint64_t last_sent; //time at which our last data or handshake packet was sent.
uint64_t last_recvSYNC; //time at which we last received a SYNC packet from the other
uint64_t last_recvdata; //time at which we last received a DATA packet from the other
uint64_t killat; //time at which to kill the connection
Data sendbuffer[MAX_QUEUE_NUM];//packet send buffer.
Data recvbuffer[MAX_QUEUE_NUM];//packet receive buffer.
uint32_t handshake_id1;
uint32_t handshake_id2;
uint32_t recv_packetnum; //number of data packets received (also used as handshake_id1)
uint32_t orecv_packetnum; //number of packets received by the other peer
uint32_t sent_packetnum; //number of data packets sent
uint32_t osent_packetnum; //number of packets sent by the other peer.
uint32_t sendbuff_packetnum; //number of latest packet written onto the sendbuffer
uint32_t successful_sent;//we know all packets before that number were successfully sent
uint32_t successful_read;//packet number of last packet read with the read_packet function
uint32_t req_packets[BUFFER_PACKET_NUM]; //list of currently requested packet numbers(by the other person)
uint16_t num_req_paquets; //total number of currently requested packets(by the other person)
uint8_t recv_counter;
uint8_t send_counter;
}Connection;
#define MAX_CONNECTIONS 256
static Connection connections[MAX_CONNECTIONS];
//static uint32_t numconnections;
//Functions
//get connection id from IP_Port
//return -1 if there are no connections like we are looking for
//return id if it found it
int getconnection_id(IP_Port ip_port)
{
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++ )
{
if(connections[i].ip_port.ip.i == ip_port.ip.i &&
connections[i].ip_port.port == ip_port.port && connections[i].status > 0)
{
return i;
}
}
return -1;
}
//table of random numbers used below.
static uint32_t randtable[6][256];
//generate a handshake_id which depends on the ip_port.
//this function will always give one unique handshake_id per ip_port.
//TODO: make this better
uint32_t handshake_id(IP_Port source)
{
uint32_t id = 0, i;
for(i = 0; i < 6; i++)
{
if(randtable[i][((uint8_t *)&source)[i]] == 0)
{
randtable[i][((uint8_t *)&source)[i]] = random_int();
}
id ^= randtable[i][((uint8_t *)&source)[i]];
}
if(id == 0)//id can't be zero
{
id = 1;
}
return id;
}
//change the hnshake id associated with that ip_port
//TODO: make this better
void change_handshake(IP_Port source)
{
uint8_t rand = random_int() % 4;
randtable[rand][((uint8_t *)&source)[rand]] = random_int();
}
//initialize a new connection to ip_port
//returns an integer corresponding to the connection id.
//return -1 if it could not initialize the connection.
//if there already was an existing connection to that ip_port return its number.
int new_connection(IP_Port ip_port)
{
int connect = getconnection_id(ip_port);
if(connect != -1)
{
return connect;
}
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 0)
{
memset(&connections[i], 0, sizeof(Connection));
connections[i].ip_port = ip_port;
connections[i].status = 1;
connections[i].inbound = 0;
connections[i].handshake_id1 = handshake_id(ip_port);
connections[i].sent_packetnum = connections[i].handshake_id1;
connections[i].sendbuff_packetnum = connections[i].handshake_id1;
connections[i].successful_sent = connections[i].handshake_id1;
connections[i].SYNC_rate = SYNC_RATE;
connections[i].data_rate = DATA_SYNC_RATE;
connections[i].last_recvSYNC = current_time();
connections[i].last_sent = current_time();
connections[i].killat = ~0;
connections[i].send_counter = 0;
return i;
}
}
return -1;
}
//initialize a new inbound connection from ip_port
//returns an integer corresponding to the connection id.
//return -1 if it could not initialize the connection.
int new_inconnection(IP_Port ip_port)
{
if(getconnection_id(ip_port) != -1)
{
return -1;
}
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 0)
{
memset(&connections[i], 0, sizeof(Connection));
connections[i].ip_port = ip_port;
connections[i].status = 2;
connections[i].inbound = 2;
connections[i].SYNC_rate = SYNC_RATE;
connections[i].data_rate = DATA_SYNC_RATE;
connections[i].last_recvSYNC = current_time();
connections[i].last_sent = current_time();
//if this connection isn't handled within 5 seconds, kill it
connections[i].killat = current_time() + 1000000UL*CONNEXION_TIMEOUT;
connections[i].send_counter = 127;
return i;
}
}
return -1;
}
//returns an integer corresponding to the next connection in our incoming connection list
//return -1 if there are no new incoming connections in the list.
int incoming_connection()
{
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].inbound == 2)
{
connections[i].inbound = 1;
return i;
}
}
return -1;
}
//return -1 if it could not kill the connection.
//return 0 if killed successfully
int kill_connection(int connection_id)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
if(connections[connection_id].status > 0)
{
connections[connection_id].status = 0;
change_handshake(connections[connection_id].ip_port);
return 0;
}
}
return -1;
}
//kill connection in seconds seconds.
//return -1 if it can not kill the connection.
//return 0 if it will kill it
int kill_connection_in(int connection_id, uint32_t seconds)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
if(connections[connection_id].status > 0)
{
connections[connection_id].killat = current_time() + 1000000UL*seconds;
return 0;
}
}
return -1;
}
//check if connection is connected
//return 0 no.
//return 1 if attempting handshake
//return 2 if handshake is done
//return 3 if fully connected
//return 4 if timed out and waiting to be killed
int is_connected(int connection_id)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
return connections[connection_id].status;
}
return 0;
}
//returns the ip_port of the corresponding connection.
IP_Port connection_ip(int connection_id)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
return connections[connection_id].ip_port;
}
IP_Port zero = {{{0}}, 0};
return zero;
}
//returns the number of packets in the queue waiting to be successfully sent.
uint32_t sendqueue(int connection_id)
{
return connections[connection_id].sendbuff_packetnum - connections[connection_id].successful_sent;
}
//returns the number of packets in the queue waiting to be successfully read with read_packet(...)
uint32_t recvqueue(int connection_id)
{
return connections[connection_id].recv_packetnum - connections[connection_id].successful_read;
}
//returns the id of the next packet in the queue
//return -1 if no packet in queue
char id_packet(int connection_id)
{
if(recvqueue(connection_id) != 0 && connections[connection_id].status != 0)
{
return connections[connection_id].recvbuffer[connections[connection_id].successful_read % MAX_QUEUE_NUM].data[0];
}
return -1;
}
//return 0 if there is no received data in the buffer.
//return length of received packet if successful
int read_packet(int connection_id, uint8_t * data)
{
if(recvqueue(connection_id) != 0)
{
uint16_t index = connections[connection_id].successful_read % MAX_QUEUE_NUM;
uint16_t size = connections[connection_id].recvbuffer[index].size;
memcpy(data, connections[connection_id].recvbuffer[index].data, size);
connections[connection_id].successful_read++;
connections[connection_id].recvbuffer[index].size = 0;
return size;
}
return 0;
}
//return 0 if data could not be put in packet queue
//return 1 if data was put into the queue
int write_packet(int connection_id, uint8_t * data, uint32_t length)
{
if(length > MAX_DATA_SIZE)
{
return 0;
}
if(length == 0)
{
return 0;
}
if(sendqueue(connection_id) < BUFFER_PACKET_NUM)
{
uint32_t index = connections[connection_id].sendbuff_packetnum % MAX_QUEUE_NUM;
memcpy(connections[connection_id].sendbuffer[index].data, data, length);
connections[connection_id].sendbuffer[index].size = length;
connections[connection_id].sendbuff_packetnum++;
return 1;
}
return 0;
}
//put the packet numbers the we are missing in requested and return the number
uint32_t missing_packets(int connection_id, uint32_t * requested)
{
uint32_t number = 0;
uint32_t i;
uint32_t temp;
if(recvqueue(connection_id) >= (BUFFER_PACKET_NUM - 1))//don't request packets if the buffer is full.
{
return 0;
}
for(i = connections[connection_id].recv_packetnum; i != connections[connection_id].osent_packetnum; i++ )
{
if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size == 0)
{
temp = htonl(i);
memcpy(requested + number, &temp, 4);
number++;
}
}
if(number == 0)
{
connections[connection_id].recv_packetnum = connections[connection_id].osent_packetnum;
}
return number;
}
//Packet sending functions
//One per packet type.
//see docs/Lossless_UDP.txt for more information.
int send_handshake(IP_Port ip_port, uint32_t handshake_id1, uint32_t handshake_id2)
{
uint8_t packet[1 + 4 + 4];
uint32_t temp;
packet[0] = 16;
temp = htonl(handshake_id1);
memcpy(packet + 1, &temp, 4);
temp = htonl(handshake_id2);
memcpy(packet + 5, &temp, 4);
return sendpacket(ip_port, packet, sizeof(packet));
}
int send_SYNC(uint32_t connection_id)
{
uint8_t packet[(BUFFER_PACKET_NUM*4 + 4 + 4 + 2)];
uint16_t index = 0;
IP_Port ip_port = connections[connection_id].ip_port;
uint8_t counter = connections[connection_id].send_counter;
uint32_t recv_packetnum = htonl(connections[connection_id].recv_packetnum);
uint32_t sent_packetnum = htonl(connections[connection_id].sent_packetnum);
uint32_t requested[BUFFER_PACKET_NUM];
uint32_t number = missing_packets(connection_id, requested);
packet[0] = 17;
index += 1;
memcpy(packet + index, &counter, 1);
index += 1;
memcpy(packet + index, &recv_packetnum, 4);
index += 4;
memcpy(packet + index, &sent_packetnum, 4);
index += 4;
memcpy(packet + index, requested, 4 * number);
return sendpacket(ip_port, packet, (number*4 + 4 + 4 + 2));
}
int send_data_packet(uint32_t connection_id, uint32_t packet_num)
{
uint32_t index = packet_num % MAX_QUEUE_NUM;
uint32_t temp;
uint8_t packet[1 + 4 + MAX_DATA_SIZE];
packet[0] = 18;
temp = htonl(packet_num);
memcpy(packet + 1, &temp, 4);
memcpy(packet + 5, connections[connection_id].sendbuffer[index].data,
connections[connection_id].sendbuffer[index].size);
return sendpacket(connections[connection_id].ip_port, packet,
1 + 4 + connections[connection_id].sendbuffer[index].size);
}
//sends 1 data packet
int send_DATA(uint32_t connection_id)
{
int ret;
uint32_t buffer[BUFFER_PACKET_NUM];
if(connections[connection_id].num_req_paquets > 0)
{
ret = send_data_packet(connection_id, connections[connection_id].req_packets[0]);
connections[connection_id].num_req_paquets--;
memcpy(buffer, connections[connection_id].req_packets + 1, connections[connection_id].num_req_paquets * 4);
memcpy(connections[connection_id].req_packets, buffer, connections[connection_id].num_req_paquets * 4);
return ret;
}
if(connections[connection_id].sendbuff_packetnum != connections[connection_id].sent_packetnum)
{
ret = send_data_packet(connection_id, connections[connection_id].sent_packetnum);
connections[connection_id].sent_packetnum++;
return ret;
}
return 0;
}
//END of packet sending functions
//Packet handling functions
//One to handle each type of packets we receive
//return 0 if handled correctly, 1 if packet is bad.
int handle_handshake(uint8_t * packet, uint32_t length, IP_Port source)
{
if(length != (1 + 4 + 4))
{
return 1;
}
uint32_t temp;
uint32_t handshake_id1, handshake_id2;
int connection = getconnection_id(source);
memcpy(&temp, packet + 1, 4);
handshake_id1 = ntohl(temp);
memcpy(&temp, packet + 5, 4);
handshake_id2 = ntohl(temp);
if(handshake_id2 == 0)
{
send_handshake(source, handshake_id(source), handshake_id1);
return 0;
}
if(is_connected(connection) != 1)
{
return 1;
}
if(handshake_id2 == connections[connection].handshake_id1)//if handshake_id2 is what we sent previously as handshake_id1
{
connections[connection].status = 2;
//NOTE:is this necessary?
//connections[connection].handshake_id2 = handshake_id1;
connections[connection].orecv_packetnum = handshake_id2;
connections[connection].osent_packetnum = handshake_id1;
connections[connection].recv_packetnum = handshake_id1;
connections[connection].successful_read = handshake_id1;
}
return 0;
}
//returns 1 if sync packet is valid
//0 if not.
int SYNC_valid(uint32_t length)
{
if(length < 4 + 4 + 2)
{
return 0;
}
if(length > (BUFFER_PACKET_NUM*4 + 4 + 4 + 2) ||
((length - 4 - 4 - 2) % 4) != 0)
{
return 0;
}
return 1;
}
//case 1:
int handle_SYNC1(IP_Port source, uint32_t recv_packetnum, uint32_t sent_packetnum)
{
if(handshake_id(source) == recv_packetnum)
{
int x = new_inconnection(source);
if(x != -1)
{
connections[x].orecv_packetnum = recv_packetnum;
connections[x].sent_packetnum = recv_packetnum;
connections[x].sendbuff_packetnum = recv_packetnum;
connections[x].successful_sent = recv_packetnum;
connections[x].osent_packetnum = sent_packetnum;
connections[x].recv_packetnum = sent_packetnum;
connections[x].successful_read = sent_packetnum;
return x;
}
}
return -1;
}
//case 2:
int handle_SYNC2(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum)
{
if(recv_packetnum == connections[connection_id].orecv_packetnum)
//&& sent_packetnum == connections[connection_id].osent_packetnum)
{
connections[connection_id].status = 3;
connections[connection_id].recv_counter = counter;
connections[connection_id].send_counter++;
return 0;
}
return 1;
}
//case 3:
int handle_SYNC3(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum, uint32_t * req_packets,
uint16_t number)
{
uint8_t comp_counter = (counter - connections[connection_id].recv_counter );
uint32_t i, temp;
//uint32_t comp_1 = (recv_packetnum - connections[connection_id].successful_sent);
//uint32_t comp_2 = (sent_packetnum - connections[connection_id].successful_read);
uint32_t comp_1 = (recv_packetnum - connections[connection_id].orecv_packetnum);
uint32_t comp_2 = (sent_packetnum - connections[connection_id].osent_packetnum);
if(comp_1 <= BUFFER_PACKET_NUM && comp_2 <= BUFFER_PACKET_NUM && comp_counter < 10 && comp_counter != 0) //packet valid
{
connections[connection_id].orecv_packetnum = recv_packetnum;
connections[connection_id].osent_packetnum = sent_packetnum;
connections[connection_id].successful_sent = recv_packetnum;
connections[connection_id].last_recvSYNC = current_time();
connections[connection_id].recv_counter = counter;
connections[connection_id].send_counter++;
for(i = 0; i < number; i++)
{
temp = ntohl(req_packets[i]);
memcpy(connections[connection_id].req_packets + i, &temp, 4 * number);
}
connections[connection_id].num_req_paquets = number;
return 0;
}
return 1;
}
int handle_SYNC(uint8_t * packet, uint32_t length, IP_Port source)
{
if(!SYNC_valid(length))
{
return 1;
}
int connection = getconnection_id(source);
uint8_t counter;
uint32_t temp;
uint32_t recv_packetnum, sent_packetnum;
uint32_t req_packets[BUFFER_PACKET_NUM];
uint16_t number = (length - 4 - 4 - 2)/ 4;
memcpy(&counter, packet + 1, 1);
memcpy(&temp, packet + 2, 4);
recv_packetnum = ntohl(temp);
memcpy(&temp,packet + 6, 4);
sent_packetnum = ntohl(temp);
if(number != 0)
{
memcpy(req_packets, packet + 10, 4 * number);
}
if(connection == -1)
{
return handle_SYNC1(source, recv_packetnum, sent_packetnum);
}
if(connections[connection].status == 2)
{
return handle_SYNC2(connection, counter, recv_packetnum, sent_packetnum);
}
if(connections[connection].status == 3)
{
return handle_SYNC3(connection, counter, recv_packetnum, sent_packetnum, req_packets, number);
}
return 0;
}
//add a packet to the received buffer and set the recv_packetnum of the connection to its proper value.
//return 1 if data was too big, 0 if not.
int add_recv(int connection_id, uint32_t data_num, uint8_t * data, uint16_t size)
{
if(size > MAX_DATA_SIZE)
{
return 1;
}
uint32_t i;
uint32_t maxnum = connections[connection_id].successful_read + BUFFER_PACKET_NUM;
uint32_t sent_packet = data_num - connections[connection_id].osent_packetnum;
for(i = connections[connection_id].recv_packetnum; i != maxnum; i++)
{
if(i == data_num)
{
memcpy(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].data, data, size);
connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size = size;
connections[connection_id].last_recvdata = current_time();
if(sent_packet < BUFFER_PACKET_NUM)
{
connections[connection_id].osent_packetnum = data_num;
}
break;
}
}
for(i = connections[connection_id].recv_packetnum; i != maxnum; i++)
{
if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size != 0)
{
connections[connection_id].recv_packetnum = i;
}
else
{
break;
}
}
return 0;
}
int handle_data(uint8_t * packet, uint32_t length, IP_Port source)
{
int connection = getconnection_id(source);
if(connection == -1)
{
return 1;
}
if(length > 1 + 4 + MAX_DATA_SIZE || length < 1 + 4 + 1)
{
return 1;
}
uint32_t temp;
uint32_t number;
uint16_t size = length - 1 - 4;
memcpy(&temp, packet + 1, 4);
number = ntohl(temp);
return add_recv(connection, number, packet + 5, size);
}
//END of packet handling functions
int LosslessUDP_handlepacket(uint8_t * packet, uint32_t length, IP_Port source)
{
switch (packet[0]) {
case 16:
return handle_handshake(packet, length, source);
case 17:
return handle_SYNC(packet, length, source);
case 18:
return handle_data(packet, length, source);
default:
return 1;
}
return 0;
}
//Send handshake requests
//handshake packets are sent at the same rate as SYNC packets
void doNew()
{
uint32_t i;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 1)
{
if((connections[i].last_sent + (1000000UL/connections[i].SYNC_rate)) <= temp_time)
{
send_handshake(connections[i].ip_port, connections[i].handshake_id1, 0);
connections[i].last_sent = temp_time;
}
}
//kill all timed out connections
if( connections[i].status > 0 && (connections[i].last_recvSYNC + CONNEXION_TIMEOUT * 1000000UL) < temp_time &&
connections[i].status != 4)
{
//kill_connection(i);
connections[i].status = 4;
}
if(connections[i].status > 0 && connections[i].killat < temp_time)
{
kill_connection(i);
}
}
}
void doSYNC()
{
uint32_t i;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 2 || connections[i].status == 3)
{
if((connections[i].last_SYNC + (1000000UL/connections[i].SYNC_rate)) <= temp_time)
{
send_SYNC(i);
connections[i].last_SYNC = temp_time;
}
}
}
}
void doData()
{
uint32_t i;
uint64_t j;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 3 && sendqueue(i) != 0)
{
if((connections[i].last_sent + (1000000UL/connections[i].data_rate)) <= temp_time)
{
for(j = connections[i].last_sent; j < temp_time; j += (1000000UL/connections[i].data_rate))
{
send_DATA(i);
}
connections[i].last_sent = temp_time;
}
}
}
}
//TODO: flow control.
//automatically adjusts send rates of packets for optimal transmission.
#define MAX_SYNC_RATE 10
void adjustRates()
{
uint32_t i;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 3)
{
if(sendqueue(i) != 0)
{
connections[i].data_rate = (BUFFER_PACKET_NUM - connections[i].num_req_paquets) * MAX_SYNC_RATE;
connections[i].SYNC_rate = MAX_SYNC_RATE;
}
else if(connections[i].last_recvdata + 1000000UL > temp_time)
{
connections[i].SYNC_rate = MAX_SYNC_RATE;
}
else
{
connections[i].SYNC_rate = SYNC_RATE;
}
}
}
}
//Call this function a couple times per second
//It's the main loop.
void doLossless_UDP()
{
doNew();
doSYNC();
doData();
adjustRates();
}
|